The case x getdocbd1a. 316KB Jun 04 2011 12:04:54 AM

Example 4.2. For N = 4, formula 4.1 supplies, with the numerical values of Example 2.2, Z ∞ e −λt E e −ν T t , X t ∈ dx dx dt =            p 2 e − 4p λ+ν p 2 x 4 p λ + ν p λ + p λ + ν 4 p λ + 4 p λ + ν – 4 p λ + ν cos ‚ 4 p λ + ν p 2 x Œ + 4 p λ sin ‚ 4 p λ + ν p 2 x Œ™ if x ≥ 0, p 2 e 4p λ p 2 x 4 p λ p λ + p λ + ν 4 p λ + 4 p λ + ν – 4 p λ cos ‚ 4 p λ p 2 x Œ − 4 p λ + ν sin ‚ 4 p λ p 2 x Œ™ if x ≤ 0. 5 Inverting with respect to ν In this section, we carry out the inversion with respect to the parameter ν. The cases x ≤ 0 and x ≥ 0 lead to results which are not quite analogous. This is due to the asymmetry of our problem. So, we split our analysis into two subsections related to the cases x ≤ 0 and x ≥ 0.

5.1 The case x

≤ 0 Theorem 5.1. The Laplace transform with respect to t of the density of the couple T t, X t is given, when x ≤ 0, by Z ∞ e −λt [P{T t ∈ ds, X t ∈ dx}ds dx] dt = − e −λs λ K −1 N s K N K X m=0 α −m λs m N E 1, m+J N λs X k ∈K B k θ m+1 k e −θ k N p λ x . 5.1 P ROOF Recall 4.1 in the case x ≤ 0: Z ∞ e −λt E e −ν T t , X t ∈ dx dx dt = 1 λ K −1 N λ + ν J −1 N X k ∈K B k θ k X j ∈J A j θ j θ k N p λ − θ j N p λ + ν e −θ k N p λ x . We have to invert with respect to ν the quantity 1 λ + ν J −1 N X j ∈J A j θ j θ k N p λ − θ j N p λ + ν = − X j ∈J A j λ + ν J −1 N N p λ + ν − θ k θ j N p λ . By using the following elementary equality, which is valid for α 0, 1 λ + ν α = 1 Γα Z ∞ e −λ+νs s α−1 ds = Z ∞ e −νs ‚ s α−1 e −λs Γα Œ ds, 909 we obtain, for |β| N p λ + ν, 1 N p λ + ν − β = 1 N p λ + ν 1 1 − β N p λ+ν = ∞ X r=0 β r λ + ν r+1 N = ∞ X r=0 β r Γ € r+1 N Š Z ∞ e −λ+νs s r+1 N −1 ds = Z ∞ e −νs s 1 N −1 e −λs ∞ X r=0 β N p s r Γ € r+1 N Š ds. The sum lying in the last displayed equality can be expressed by means of the Mittag-Leffler function see [7, Chap. XVIII ]: E a,b ξ = P ∞ r=0 ξ r Γar+b . Then, 1 N p λ + ν − β = Z ∞ e −νs s 1 N −1 e −λs E 1 N , 1 N β N p s ds. 5.2 Next, we write X j ∈J A j N p λ + ν − θ k θ j N p λ = Z ∞ e −νs – s 1 N −1 e −λs X j ∈J A j E 1 N , 1 N ‚ θ k θ j N p λs Œ™ ds, 5.3 where X j ∈J A j E 1 N , 1 N ‚ θ k θ j N p λs Œ = X j ∈J A j ∞ X r=0 ‚ θ k θ j Œ r λs r N Γ € r+1 N Š = ∞ X r=0 θ r k X j ∈J A j θ r j λs r N Γ € r+1 N Š . When performing the euclidian division of r by N , we can write r as r = ℓN + m with ℓ ≥ 0 and ≤ m ≤ N − 1. With this, we have θ −r j = θ N j −ℓ θ −m j = κ ℓ N θ −m j and θ r k = κ ℓ N θ m k . Then, θ r k X j ∈J A j θ r j = θ m k X j ∈J A j θ m j = θ m k α −m . Hence, since by 2.9 the α −m , K + 1 ≤ m ≤ N, vanish, X j ∈J A j E 1 N , 1 N ‚ θ k θ j N p λs Œ = ∞ X ℓ=0 K X m=0 α −m θ m k λs ℓ+ m N Γ € ℓ + m+1 N Š = K X m=0 α −m θ m k λs m N E 1, m+1 N λs and 5.3 becomes X j ∈J A j N p λ + ν − θ k θ j N p λ = Z ∞ e −νs s 1 N −1 e −λs K X m=0 α −m θ m k λs m N E 1, m+1 N λs ds. As a result, by introducing a convolution product, we obtain Z ∞ e −λt E e −ν T t , X t ∈ dx dx dt = − 1 λ K −1 N X k ∈K B k θ k e −θ k N p λ x 910 × Z ∞ e −νs   Z s σ J −1 N −1 e −λσ Γ € J −1 N Š × e −λs−σ K X m=0 α −m θ m k λ m N s − σ m+1 N −1 E 1, m+1 N λs − σ dσ   ds. By removing the Laplace transforms with respect to the parameter ν of each member of the foregoing equality, we extract Z ∞ e −λt [P{T t ∈ ds, X t ∈ dx}ds dx] dt = − e −λs λ K −1 N K X m=0 α −m λ m N X k ∈K B k θ m+1 k e −θ k N p λ x Z s σ J −1 N −1 Γ € J −1 N Š s − σ m+1 N −1 E 1, m+1 N λs − σ dσ. The integral lying on the right-hand side of the previous equality can be evaluated as follows: Z s σ J −1 N −1 Γ € J −1 N Š s − σ m+1 N −1 E 1, m+1 N λs − σ dσ = Z s σ J −1 N −1 Γ € J −1 N Š s − σ m+1 N −1 ∞ X ℓ=0 λ ℓ s − σ ℓ Γ € ℓ + m+1 N Š dσ = ∞ X ℓ=0 λ ℓ Z s σ J −1 N −1 Γ € J −1 N Š s − σ ℓ+ m+1 N −1 Γ € ℓ + m+1 N Š d σ = ∞ X ℓ=0 λ ℓ s ℓ+ m+J N −1 Γ € ℓ + m+J N Š = s m+J N −1 E 1, m+J N λs from which we deduce 5.1. „ Remark 5.1. An alternative expression for formula 5.1 is for x ≤ 0 Z ∞ e −λt [P{T t ∈ ds, X t ∈ dx}ds dx] dt = − e −λs λ K −1 N s K N X j ∈J k ∈K A j B k θ k E 1 N , J N ‚ θ k θ j N p λs Œ e −θ k N p λ x . 5.4 In effect, by 5.1, Z ∞ e −λt [P{T t ∈ ds, X t ∈ dx}ds dx] dt = − e −λs λ K −1 N s K N ∞ X ℓ=0 K X m=0 X k ∈K α −m B k θ m+1 k λs ℓ+ m N Γ € ℓ + m+J N Š e −θ k N p λ x = − e −λs λ K −1 N s K N ∞ X ℓ=0 N −1 X m=0 X j ∈J k ∈K A j B k θ k ‚ θ k θ j Œ m λs ℓ+ m N Γ € ℓ + m+J N Š e −θ k N p λ x . 911 In the last displayed equality, we have extended the sum with respect to m to the range 0 ≤ m ≤ N −1 because, by 2.9, the α −m , K + 1 ≤ m ≤ N − 1, vanish. Let us introduce the index r = ℓN + m. Since  θ k θ j ‹ m =  θ k θ j ‹ r , we have Z ∞ e −λt [P{T t ∈ ds, X t ∈ dx}ds dx] dt = − e −λs λ K −1 N s K N X j ∈J k ∈K A j B k θ k ∞ X r=0  θ k θ j N p λs ‹ r Γ € r+J N Š e −θ k N p λ x which coincide with 5.4. Example 5.1. Case N = 3. We have formally for x ≤ 0, when κ 3 = −1: Z ∞ e −λt [P{T t ∈ ds, X t ∈ dx}ds dx] dt = e 3 p λ x ‚ e −λs 3 p s E 1, 2 3 λs − 3 p λ Œ and when κ 3 = 1: Z ∞ e −λt [P{T t ∈ ds, X t ∈ dx}ds dx] dt = e −λs+ 3p λ 2 x p 3 3 p λs 2 • p 3 cos  p 3 3 p λ x 2 ‹ 3 p λs E 1, 2 3 λs − λs 2 3 e λs ‹ + sin  p 3 3 p λ x 2 ‹ 3 p λs E 1, 2 3 λs + λs 2 3 e λs − 2E 1, 1 3 λs ‹˜ . Example 5.2. Case N = 4. We have, for x ≥ 0, Z ∞ e −λt [P{T t ∈ ds, X t ∈ dx}ds dx] dt = p 2 e −λs+ 4p λ p 2 x 4 p λ p s • cos  4 p λ x p 2 ‹ 4 p λs E 1, 3 4 λs − p λs e λs ‹ + sin  4 p λ x p 2 ‹ 4 p λs E 1, 3 4 λs − E 1, 1 2 λs ‹˜ .

5.2 The case x

Dokumen yang terkait

AN ALIS IS YU RID IS PUT USAN BE B AS DAL AM P E RKAR A TIND AK P IDA NA P E NY E RTA AN M E L AK U K A N P R AK T IK K E DO K T E RA N YA NG M E N G A K IB ATK AN M ATINYA P AS IE N ( PUT USA N N O MOR: 9 0/PID.B /2011/ PN.MD O)

0 82 16

ANALISIS FAKTOR YANGMEMPENGARUHI FERTILITAS PASANGAN USIA SUBUR DI DESA SEMBORO KECAMATAN SEMBORO KABUPATEN JEMBER TAHUN 2011

2 53 20

EFEKTIVITAS PENDIDIKAN KESEHATAN TENTANG PERTOLONGAN PERTAMA PADA KECELAKAAN (P3K) TERHADAP SIKAP MASYARAKAT DALAM PENANGANAN KORBAN KECELAKAAN LALU LINTAS (Studi Di Wilayah RT 05 RW 04 Kelurahan Sukun Kota Malang)

45 393 31

FAKTOR – FAKTOR YANG MEMPENGARUHI PENYERAPAN TENAGA KERJA INDUSTRI PENGOLAHAN BESAR DAN MENENGAH PADA TINGKAT KABUPATEN / KOTA DI JAWA TIMUR TAHUN 2006 - 2011

1 35 26

A DISCOURSE ANALYSIS ON “SPA: REGAIN BALANCE OF YOUR INNER AND OUTER BEAUTY” IN THE JAKARTA POST ON 4 MARCH 2011

9 161 13

Pengaruh kualitas aktiva produktif dan non performing financing terhadap return on asset perbankan syariah (Studi Pada 3 Bank Umum Syariah Tahun 2011 – 2014)

6 101 0

Pengaruh pemahaman fiqh muamalat mahasiswa terhadap keputusan membeli produk fashion palsu (study pada mahasiswa angkatan 2011 & 2012 prodi muamalat fakultas syariah dan hukum UIN Syarif Hidayatullah Jakarta)

0 22 0

Pendidikan Agama Islam Untuk Kelas 3 SD Kelas 3 Suyanto Suyoto 2011

4 108 178

ANALISIS NOTA KESEPAHAMAN ANTARA BANK INDONESIA, POLRI, DAN KEJAKSAAN REPUBLIK INDONESIA TAHUN 2011 SEBAGAI MEKANISME PERCEPATAN PENANGANAN TINDAK PIDANA PERBANKAN KHUSUSNYA BANK INDONESIA SEBAGAI PIHAK PELAPOR

1 17 40

KOORDINASI OTORITAS JASA KEUANGAN (OJK) DENGAN LEMBAGA PENJAMIN SIMPANAN (LPS) DAN BANK INDONESIA (BI) DALAM UPAYA PENANGANAN BANK BERMASALAH BERDASARKAN UNDANG-UNDANG RI NOMOR 21 TAHUN 2011 TENTANG OTORITAS JASA KEUANGAN

3 32 52