getdocbd1a. 316KB Jun 04 2011 12:04:54 AM

(1)

El e c t ro n ic

Jo ur

n a l o

f P

r o

b a b il i t y Vol. 15 (2010), Paper no. 28, pages 895–931.

Journal URL

http://www.math.washington.edu/~ejpecp/

Joint distribution of the process and its sojourn time on

the positive half-line for pseudo-processes governed by

high-order heat equation

Valentina C

AMMAROTA∗

and Aimé L

ACHAL†

Abstract

Consider the high-order heat-type equation ∂u/∂t = ±∂Nu/∂xN for an integer N > 2 and

introduce the related Markov pseudo-process(X(t))t0. In this paper, we study the sojourn time

T(t)in the interval[0,+)up to a fixed time t for this pseudo-process. We provide explicit expressions for the joint distribution of the couple(T(t),X(t)).

Key words: pseudo-process, joint distribution of the process and its sojourn time, Spitzer’s identity.

AMS 2000 Subject Classification:Primary 60G20; Secondary: 60J25, 60K35, 60J05. Submitted to EJP on October 7, 2009, final version accepted March 25, 2010.

Dipartimento di Statistica, Probabilità e Statistiche Applicate, UNIVERSITY OFROME‘LASAPIENZA’, P.le A. Moro 5, 00185 Rome, ITALY.E-mail address:valentina.cammarota@uniroma1.it

Pôle de Mathématiques/Institut Camille Jordan/CNRS UMR5208, Bât. L. de Vinci, INSTITUTNATIONAL DESSCIENCES

APPLIQUÉES DELYON, 20 av. A. Einstein, 69621 Villeurbanne Cedex, FRANCE.E-mail address:aime.lachal@insa-lyon.fr,


(2)

1

Introduction

LetN be an integer equal or greater than 2 andκN = (1)1+N/2 if N is even,κN =±1 if N is odd. Consider the heat-type equation of orderN:

∂u

∂t =κN

∂Nu

∂xN. (1.1)

For N = 2, this equation is the classical normalized heat equation and its relationship with linear Brownian motion is of the most well-known. For N > 2, it is known that no ordinary stochastic process can be associated with this equation. Nevertheless a Markov “pseudo-process” can be con-structed by imitating the caseN =2. This pseudo-process,X = (X(t))t0 say, is driven by a signed measure as follows. Letp(t;x)denote the elementary solution of Eq. (1.1), that is, psolves (1.1) with the initial conditionp(0;x) =δ(x). This solution is characterized by its Fourier transform (see, e.g.,[13])

Z +∞

−∞

eiµxp(t;x)dx =eκNt(−) N

.

The functionpis real, not always positive and its total mass is equal to one:

Z +∞

−∞

p(t;x)dx =1. Moreover, its total absolute value massρexceeds one:

ρ=

Z +∞

−∞

|p(t;x)|dx >1.

In fact, ifN is even, p is symmetric andρ <+, and if N is odd, ρ= +. The signed function

pis interpreted as the pseudo-probability for X to lie at a certain location at a certain time. More precisely, for any timet>0 and any locations x,y∈R, one defines

P{X(t)dy|X(0) =x}/dy =p(t;xy).

Roughly speaking, the distribution of the pseudo-processX is defined through its finite-dimensional distributions according to the Markov rule: for any n>1, any times t1, . . . ,tn such that 0< t1 <

· · ·<tn and any locations x,y1, . . . ,ynR,

P{X(t1)dy1, . . .X(tn)dyn|X(0) =x}/dy1. . . dyn= n

Y

i=1

p(titi1;yi1yi)

where t0=0 and y0=x.

This pseudo-process has been studied by several authors: see the references [2] to [4] and the references[8]to[20].

Now, we consider the sojourn time ofX in the interval[0,+)up to a fixed time t:

T(t) =

Z t

0


(3)

The computation of the pseudo-distribution of T(t) has been done by Beghin, Hochberg, Nikitin, Orsingher and Ragozina in some particular cases (see [2; 4; 9; 16; 20]), and by Krylov and the second author in more general cases (see[10; 11]).

The method adopted therein is the use of the Feynman-Kac functional which leads to certain differ-ential equations. We point out that the pseudo-distribution ofT(t)is actually a genuine probability distribution and in the case whereN is even,T(t)obeys the famous Paul Lévy’s arcsine law, that is

P{T(t)ds}/ds= 1l(0,t)(s)

πps(ts)

.

We also mention that the sojourn time ofX in a small interval(ǫ,ǫ)is used in[3]to define a local time forX at 0. The evaluation of the pseudo-distribution of the sojourn timeT(t)together with the up-to-date value of the pseudo-process, X(t), has been tackled only in the particular casesN =3 and N = 4 by Beghin, Hochberg, Orsingher and Ragozina (see [2; 4]). Their results have been obtained by solving certain differential equations leading to some linear systems. In[2; 4; 11], the Laplace transform of the sojourn time serves as an intermediate tool for computing the distribution of the up-to-date maximum ofX.

In this paper, our aim is to derive the joint pseudo-distribution of the couple (T(t),X(t)) for any integerN. Since the Feynman-Kac approach used in[2; 4]leads to very cumbersome calculations, we employ an alternative method based on Spitzer’s identity. The idea of using this identity for studying the pseudo-process X appeared already in [8] and [18]. Since the pseudo-process X is properly defined only in the case whereN is an even integer, the results we obtain are valid in this case. Throughout the paper, we shall then assume thatNis even. Nevertheless, we formally perform all computations also in the case whereN is odd, even if they are not justified.

The paper is organized as follows.

• In Section 2, we write down the settings that will be used. Actually, the pseudo-processX is not well defined on the whole half-line[0,+). It is properly defined on dyadic timesk/2n,

k,nN. So, we introduce ad-hoc definitions forX(t) and T(t) as well as for some related pseudo-expectations. For instance, we shall give a meaning to the quantity

E(λ,µ,ν) =E

–Z

0

eλt+iµX(t)−νT(t)dt ™

which is interpreted as the 3-parameters Laplace-Fourier transform of (T(t),X(t)). We also recall in this part some algebraic known results.

• In Section 3, we explicitly computeE(λ,µ,ν)with the help of Spitzer’s identity. This is Theo-rem 3.1.

• Sections 4, 5 and 6 are devoted to successively inverting the Laplace-Fourier transform with respect to µ, ν and λ respectively. More precisely, in Section 4, we perform the inversion with respect to µ; this yields Theorem 4.1. Next, we perform the inversion with respect to ν which gives Theorems 5.1 and 5.2. Finally, we carry out the inversion with respect to λ and the main results of this paper are Theorems 6.2 and 6.3. In each section, we examine the particular cases N = 3 (case of an asymmetric pseudo-process) and N = 4 (case of the biharmonic pseudo-process). ForN=2 (case of rescaled Brownian motion), one can retrieve


(4)

several classical formulas and we refer the reader to the first draft of this paper[6]. Moreover, our results recover several known formulas concerning the marginal distribution of T(t), see also[6].

• The final appendix (Section 7) contains a discussion on Spitzer’s identity as well as some technical computations.

2

Settings

2.1

A first list of settings

In this part, we introduce for each integerna step-processXn coinciding with the pseudo-process X on the times k/2n, k ∈ N. Fix n ∈ N. Set, for any k ∈ N, Xk,n = X(k/2n) and for any t ∈ [k/2n,(k+1)/2n),X(t) =Xk,n. We can write globally

Xn(t) = ∞

X

k=0

Xk,n1l[k/2n,(k+1)/2n)(t).

Now, we recall from[13]the definitions of tame functions, functions of discrete observations, and admissible functions associated with the pseudo-processX. They were introduced by Nishioka[18]

in the caseN=4.

Definition 2.1. Fix n N. A tame function for X is a function of a finite number k of ob-servations of the pseudo-process X at times j/2n, 1 jk, that is a quantity of the form Fk,n = F(X(1/2n), . . . ,X(k/2n)) for a certain k and a certain bounded Borel function F :Rk −→C. The “expectation” of Fk,n is defined as

E(Fk,n) =

Z

. . .

Z

Rk

F(x1, . . . ,xk)p(1/2n;xx1). . .p(1/2n;xk1xk)dx1. . . dxk.

Definition 2.2. Fix n ∈ N. A function of the discrete observations of X at times k/2n, k 1, is a

convergent series of tame functions: FXn = P∞k=1Fk,n where Fk,n is a tame function for all k 1. Assuming the seriesP∞k=1|E(Fk,n)|convergent, the “expectation” of FXnis defined as

E(FXn) = ∞

X

k=1

E(Fk,n).

Definition 2.3. An admissible function is a functional FX of the pseudo-process X which is the limit of a sequence(FXn)nNof functions of discrete observations of X : FX =limn→∞FXn,such that the sequence

(E(FX

n))n∈Nis convergent. The “expectation” of FX is defined as

E(FX) = lim

n→∞E(FXn).

In this paper, we are concerned with the sojourn time ofX in[0,+):

T(t) =

Z t

0


(5)

In order to give a proper meaning to this quantity, we introduce the similar object related toXn:

Tn(t) =

Z t

0

1l[0,+)(Xn(s))ds.

For determining the distribution ofTn(t), we compute its 3-parameters Laplace-Fourier transform: En(λ,µ,ν) =E

–Z

0

eλt+iµXn(t)−νTn(t)dt ™

.

In Section 3, we prove that the sequence(En(λ,µ,ν))n∈N is convergent and we compute its limit:

lim

n→∞En(λ,µ,ν) =E(λ,µ,ν).

Formally,E(λ,µ,ν)is interpreted as

E(λ,µ,ν) =E

–Z ∞

0

eλt+iµX(t)−νT(t)dt ™

where the quantityR0eλt+iµX(t)−νT(t)dt is an admissible function ofX. This computation is per-formed with the aid of Spitzer’s identity. This latter concerns the classical random walk. Neverthe-less, since it hinges on combinatorial arguments, it can be applied to the context of pseudo-processes. We clarify this point in Section 3.

2.2

A second list of settings

We introduce some algebraic settings. Letθi, 1≤iN, be theNthroots ofκN and J={i∈ {1, . . . ,N}: ℜθi >0}, K={i∈ {1, . . . ,N}:ℜθi <0}.

Of course, the cardinalities ofJ andK sum toN: #J+#K=N. We state several results related to theθi’s which are proved in[11; 13]. We have the elementary equalities

X

jJ

θj+

X

kK

θk= N

X

i=1 θi=0,

Y

jJ

θj

! Y

kK

θk

!

= N

Y

i=1

θi = (−1)N−1κN (2.1)

and

N

Y

i=1

(xθi) = N

Y

i=1

(xθ¯i) =xNκN. (2.2)

Moreover, from formula (5.10) in[13],

Y

kK

(xθk) =

#K

X

=0

(1)ℓσℓx#K, (2.3)

whereσℓ=

P

k1<···<kℓ

k1,...,kℓK

θk1. . .θkℓ. We have by Lemma 11 in[11]

X

jJ

θj

Y

iJ\{j}

θixθj

θiθj =X

jJ

θj=−

X

kK

θk=

 

 

1

sinπN ifNis even,

1 2 sin2πN =

cos π

2N

sinNπ ifNis odd.


(6)

Set Aj = QiJ\{j} θi

θiθj for jJ, and Bk

= QiK\{k} θi

θiθk for kK. The Aj’s and Bk’s solve a

Vandermonde system: we have

X

jJ Aj=

X

kK Bk=1

(2.5)

X

jJ

Ajθjm=0 for 1≤m≤#J−1,

X

kK

Bkθkm=0 for 1≤m≤#K−1.

Observing that 1/θj =θ¯j for jJ, that{θj,jJ}= {θ¯j,jJ}and similarly for theθk’s, kK,

formula (2.11) in[13]gives

X

jJ Ajθj

θjx =X

jJ Aj

1θ¯jx

=Q 1

jJ(1−θjx)

, X

kK Bkθk

θkx =X

kK Bk

1θ¯kx

= Q 1

kK(1−θkx)

(2.6) In particular,

X

jJ Ajθj

θjθk = 1

N Bk

, X

kK Bkθk

θkθj = 1

N Aj

. (2.7)

Set, for anymZ, αm =

P

jJAjθmj andβm =

P

kKBkθkm. We have, by formula (2.11) of[13],

β#K = (−1)#K−1

Q

kKθk. Moreover, β#K+1 = (−1)#K−1 €Q

kKθk

Š€P

kKθk

Š

. The proof of this claim is postponed to Lemma 7.2 in the appendix. We sum up this information and (2.5) into

βm=

    

    

1 ifm=0,

0 if 1≤m≤#K−1,

(1)#K−1QkKθk ifm=#K, (1)#K−1€QkKθk

Š€P

kKθk

Š

ifm=#K+1,

κN ifm=N.

(2.8)

We also have

αm=

X

jJ Aj

θjm =κN

X

jJ

AjθjNm=κNαNm

and then

αm=

    

    

1 if m=0,

κN(1)#J−1€ QjJθj

Š€ P

jJθj

Š

if m=#K1, κN(1)#J−1Q

jJθj if m=#K,

0 if #K+1mN−1,

κN if m=N.

(2.9)

In particular, by (2.1),

α0β0=αNβN=1, α−##K=−1, α−##K+1= X

jJ

θj, α1−##K =

X

kK


(7)

Concerning the kernelp, we have from Proposition 1 in[11]

p(t; 0) =

  

  

Γ€1 N

Š

Nπt1/N ifN is even, Γ€1

N

Š

cos€2πNŠ

Nπt1/N ifN is odd.

(2.11)

Proposition 3 in[11]states

P{X(t)0}=

Z ∞

0

p(t;ξ)dξ= #J

N , P{X(t)≤0}= Z 0

−∞

p(t;ξ)dξ= #K

N (2.12)

and formulas (4.7) and (4.8) in[13]yield, forλ >0 andµ∈R,

Z ∞

0 eλt

t dt Z 0

−∞

€

eiµξ−1Šp(t;−ξ)dξ=log Y

kK N p

λ

N p

λiµθk

!

,

(2.13)

Z ∞

0 eλt

t dt Z ∞

0 €

eiµξp(t;ξ)dξ=log

‚ Y

jJ N p

λ

N p

λiµθj

Œ

.

Let us introduce, for jJ,mN1 andx 0,

Ij,m(τ;x) = N i

2π ‚

eimNπ

Z ∞

0

ξNm−1eτξNθjei

π

NxξdξeimNπ

Z ∞

0

ξNm−1eτξNθjei

π

Nxξdξ

Œ

. (2.14) Formula (5.13) in[13]gives, for 0≤mN−1 andx ≥0,

Z ∞

0

eλτIj,m(τ;x)dτ=λmNeθj Np

λx. (2.15)

We introduce in a very similar manner the functionsIk,m(τ;x)forkK andx ≤0.

Example 2.1. CaseN =3.

•Forκ3= +1, the third roots ofκ3areθ1=1,θ2=ei

2π

3 ,θ

3=ei

2π

3, and the settings readJ={1},

K={2, 3},A1=1,B2= ei

π

6

p

3 ,B3=

eiπ6

p

3,α0=α−1=α−2=1,β0=1,β−1=−1. Moreover, I1,0(τ;x) =

3i

2π ‚Z ∞

0

ξ2eτξ3−ei

π

3dξ

Z ∞

0

ξ2eτξ3−ei

π

3dξ

Œ

.

•Forκ3=−1, the third roots ofκ3 areθ1=ei

π

3,θ2=ei

π

3,θ3=−1. The settings readJ={1, 2},

K={3},A1= ei

π

6

p

3,A2=

e6

p

3 ,B3=1,α0=α−1=1,β0=β−2=1,β−1=−1. Moreover, I1,1(τ;x) =

3i

2π ‚

e3

Z ∞

0

ξeτξ3−ei

2π

3 dξeiπ3

Z ∞

0

ξeτξ3−dξ Œ


(8)

I2,1(τ;x) =

3i

2π ‚

e3

Z ∞

0

ξeτξ3−dξeiπ3

Z ∞

0

ξeτξ3−ei

2π

3 dξ

Œ

.

Actually, the three functions I1,0, I1,1 and I2,1 can be expressed by mean of the Airy function Hi

defined as Hi(z) =π1R0eξ

3

3+dξ(see, e.g.,[1, Chap. 10.4]). Indeed, we easily have by a change

of variables, differentiation and integration by parts, forτ >0 andzC,

Z ∞

0

eτξ3+dξ= π (3τ)4/3Hi

z

3

p

3τ

,

Z ∞

0

ξeτξ3+dξ= π (3τ)2/3Hi

z

3

p

3τ

,

Z ∞

0

ξ2eτξ3+dξ= πz (3τ)4/3Hi

z

3

p

3τ

+ 1

3τ. Therefore,

I1,0(τ;x) = x

2p33τ4/3

eiπ6Hi

e

3x 3

p

3τ

+e6Hi

e

3x 3

p

3τ

, (2.16)

I1,1(τ;x) =

3

p

3 2τ2/3

eiπ6Hi′

e

i23πx

3

p

3τ

+e6Hi′

−p3x

3τ

, (2.17)

I2,1(τ;x) =

3

p

3 2τ2/3

eiπ6Hi′

−p3x

3τ

+e6Hi′

e

i23πx

3

p

3τ

. (2.18)

Example 2.2. Case N =4: we have κ4 =−1. This is the case of the biharmonic pseudo-process.

The fourth roots ofκ4 areθ1=ei

π

4,θ2 =ei

π

4,θ3=ei 3π

4 ,θ4 =ei 3π

4 and the notations read in this

caseJ={1, 2},K={3, 4},A1=B3= e4 p

2 ,A2=B4=

eiπ4

p

2,α0=α−2=1,α−1= p

2,β0=β−2=1, β1=−

p

2. Moreover,

I1,1(τ;x) = 2

π ‚

eiπ4

Z ∞

0

ξ2eτξ4−dξ+e4

Z ∞

0

ξ2eτξ4+i xξdξ Œ

,

(2.19)

I2,1(τ;x) = 2

π ‚

eiπ4

Z ∞

0

ξ2eτξ4−i xξdξ+e4

Z ∞

0

ξ2eτξ4−dξ Œ

.

3

Evaluation of

E

(

λ

,

µ

,

ν

)

The goal of this section is to evaluate the limit E(λ,µ,ν) = limn→∞En(λ,µ,ν). We write En(λ,µ,ν) =E[Fn(λ,µ,ν)]with

Fn(λ,µ,ν) =

Z ∞

0

eλt+iµXn(t)−νTn(t)dt.

Let us rewrite the sojourn timeTn(t)as follows:

Tn(t) =

[2nt]

X

j=0

Z (j+1)/2n

j/2n

1l[0,+)(Xn(s))ds

Z ([2nt]+1)/2n

t


(9)

=

[2nt]

X

j=0

Z (j+1)/2n

j/2n

1l[0,+∞)(Xj,n)ds

Z ([2nt]+1)/2n

t

1l[0,+∞)(X[2nt],n)ds

= 1

2n

[2nt]

X

j=0

1l[0,+∞)(Xj,n) +

t[2

nt] +1

2n

1l[0,+∞)(X[2nt],n).

SetT0,n=0 and, fork1,

Tk,n= 1

2n

k

X

j=1

1l[0,+)(Xj,n).

Fork≥0 andt∈[k/2n,(k+1)/2n), we see that

Tn(t) =Tk,n+

t k+1

2n

1l[0,+)(Xk,n) + 1

2n. With this decomposition at hand, we can begin to computeFn(λ,µ,ν):

Fn(λ,µ,ν) =

Z ∞

0

eλt+iµXn(t)−νTn(t)dt

= ∞

X

k=0

Z (k+1)/2n

k/2n

eλt+iµXk,nνTk,n2νn+ν(k2+1nt)1l[0,+∞)(Xk,n)dt

=eν/2n

X

k=0

Z (k+1)/2n

k/2n

eλt+ν(k2+1nt)1l[0,+∞)(Xk,n)dt

!

eiµXk,nνTk,n.

The value of the above integral is

Z (k+1)/2n

k/2n

eλt+ν(k2+1nt)1l[0,+∞)(Xk,n)dt=eλ(k+1)/2ne

[λ+ν1l[0,+∞)(Xk,n)]/2n1

λ+ν1l[0,+∞)(Xk,n)

. Therefore,

Fn(λ,µ,ν) =

1e−(λ+ν)/2n

λ+ν

X

k=0

eλk/2n+iµXk,nνTk,n1l

[0,+∞)(Xk,n)

+eν/2n 1−eλ/2n

λ

X

k=0

eλk/2n+iµXk,nνTk,n1l

(−∞,0)(Xk,n).

Before applying the expectation to this last expression, we have to check that it defines a function of discrete observations of the pseudo-processX which satisfies the conditions of Definition 2.2. This fact is stated in the proposition below.

Proposition 3.1. Suppose N even and fix an integer n. For any complex λ such that ℜ(λ) > 0

and anyν >0, the seriesP∞k=0eλk/2neiµXk,nνTk,n1l

[0,+∞)(Xk,n)

—

andP∞k=0eλk/2neiµXk,nνTk,n

1l(−∞,0)(Xk,nare absolutely convergent and their sums are given by

X

k=0

eλk/2neiµXk,nνTk,n1l

[0,+∞)(Xk,n)

—

= e ν/2n

Sn+(λ,µ,ν) eν/2n


(10)

X

k=0

eλk/2neiµXk,nνTk,n1l

(−∞,0)(Xk,n)

—

= e

ν/2n[S

n(λ,µ,ν)−1] eν/2n−1 ,

where

Sn+(λ,µ,ν) =exp

X

k=1 €

1eνk/2nŠeλk/2n

k E

” eiµXk,n1l

[0,+∞)(Xk,n)

— !

,

Sn−(λ,µ,ν) =exp

X

k=1 €

1eνk/2nŠeλk/2n

k E

” eiµXk,n1l

(−∞,0)(Xk,n)

— !

.

PROOF

Step 1. First, notice that for anyk1, we have

E

”

eiµXk,nνTk,n1l

[0,+∞)(Xk,n)

— = Z . . . Z

Rk−1×[0,+)

eiµxk2νn

Pk

j=11l[0,+∞)(xj)P

{X1,ndx1, . . . ,Xk,ndxk} = Z . . . Z

Rk−1×[0,+)

eiµxk2νn

Pk

j=11l[0,+∞)(xj)p

1

2n;x1

k−1 Y

j=1 p

1

2n;xjxj+1

dx1. . . dxk

≤ Z . . . Z Rk p 1

2n;x1

k−1 Y

j=1 p

1

2n;xjxj+1

dx1. . . dxk

= Z . . . Z Rk k Y

j=1 p

1

2n;yj

dy1. . . dyk

= k

Y

j=1 Z +∞

−∞ p 1

2n;yj

dyj

=ρk.

Hence, we derive the following inequality:

X

k=1 e

λk/2n

eiµXk,nνTk,n1l

[0,+∞)(Xk,n)

— ≤

X

k=1 ρk

e

λk/2n

=

1

1−ρe−ℜ(λ)/2n.

We can easily see that this bound holds true also when the factor 1l[0,+)(Xk,n) is replaced by

1l(−∞,0)(Xk,n). This shows that the two series of Proposition 3.1 are finite for λ ∈ C such that

ρe−ℜ(λ)/2n<1, that is(λ)>2nlogρ.

Step 2. For λ∈C such that(λ)>2nlogρ, the Spitzer’s identity (7.2) (see Lemma 7.1 in the appendix) gives for the first series of Proposition 3.1

X

k=0

eλk/2neiµXk,nνTk,n1l

[0,+∞)(Xk,n)

—

= 1

eν/2n −1

eν/2

n

−exp

X

k=1 €

1eνk/2nŠeλk/2n

k E

” eiµXk,n1l

[0,+∞)(Xk,n)

— !


(11)

The right-hand side of (3.1) is an analytic continuation of the Dirichlet series lying in the left-hand side of (3.1), which is defined on the half-plane{λ∈C:(λ)>0}. Moreover, for anyǫ >0, this continuation is bounded over the half-plane{λ∈C:ℜ(λ)ǫ}. Indeed, we have

E

” eiµXk,n1l

[0,+∞)(Xk,n)

— =

Z +∞

0

eiµξp k

2n;−ξ

dξ

≤ Z +∞

0 p

k

2n;−ξ

dξ < ρ and then

exp −

X

k=1 €

1−eνk/2nŠeλk/2n

k E

” eiµXk,n1l

[0,+∞)(Xk,n)

— !

≤exp ρ

X

k=1

e−ℜ(λ)k/2n k

!

=exp€ρlog(1e−ℜ(λ)/2n)Š= 1

(1e−ℜ(λ)/2n)ρ.

Therefore, if(λ)ǫ,

exp

X

k=1 €

1eνk/2nŠeλk/2n

k E

” eiµXk,n1l

[0,+∞)(Xk,n)

— !

≤ 1

(1eǫ/2n )ρ.

This proves that the left-hand side of this last inequality is bounded for(λ) ǫ. By a lemma of Bohr ([5]), we deduce that the abscissas of convergence, absolute convergence and boundedness of the Dirichlet seriesP∞k=0eλk/2neiµXk,nνTk,n1l

[0,+∞)(Xk,n)

—

are identical. So, this series converges absolutely on the half-plane {λ ∈ C : (λ) > 0} and (3.1) holds on this half-plane. A similar conclusion holds for the second series of Proposition 3.1. The proof is finished. „

Thanks to Proposition 3.1, we see that the functionalFn(λ,µ,ν)is a function of the discrete obser-vations ofX and, by Definition 2.2, its expectation can be computed as follows:

En(λ,µ,ν) =1−e

−(λ+ν)/2n

λ+ν

eν/2nSn+(λ,µ,ν) eν/2n−1 +

1eλ/2n

λ

Sn−(λ,µ,ν)1

eν/2n−1

=

‚

eν/2n(1e−(λ+ν)/2n) (λ+ν)(eν/2n

−1) −

1eλ/2n

λ(eν/2n −1)

Œ

+ 1−eλ/2n λ(eν/2n

−1)S

n(λ,µ,ν)−

1e−(λ+ν)/2n (λ+ν)(eν/2n

−1)S

+

n(λ,µ,ν). (3.2)

Now, we have to evaluate the limit E(λ,µ,ν) of En(λ,µ,ν) as n goes toward infinity. It is easy to see that this limit exists; see the proof of Theorem 3.1 below. Formally, we write E(λ,µ,ν) =

E[F(λ,µ,ν)]with

F(λ,µ,ν) =

Z ∞

0

eλt+iµX(t)−νT(t)dt.

Then, we can say that the functionalF(λ,µ,ν)is an admissible function ofX in the sense of Defini-tion 2.3. The value of its expectaDefini-tionE(λ,µ,ν)is given in the following theorem.

Theorem 3.1. The3-parameters Laplace-Fourier transform of the couple(T(t),X(t))is given by

E(λ,µ,ν) = Q 1

jJ( N p

λ+νiµθj)

Q

kK( N p

λiµθk)


(12)

PROOF

It is plain that the term lying within the biggest parentheses in the last equality of (3.2) tends to zero asngoes towards infinity and that the coefficients lying beforeSn+(λ,µ,ν)andSn−(λ,µ,ν)tend to 1. As a byproduct, we derive at the limit whenn→ ∞,

E(λ,µ,ν) = 1

ν ”

S−(λ,µ,ν)S+(λ,µ,ν)— (3.4) where we set

S+(λ,µ,ν) = lim

n→∞S +

n(λ,µ,ν) =exp

‚ −

Z ∞

0

eiµX(t)1l[0,+)(X(t))—€1eνtŠeλt

t dt Œ

,

S−(λ,µ,ν) = lim

n→∞S

n(λ,µ,ν) =exp

‚ Z

0

eiµX(t)1l(−∞,0)(X(t))—€1eνtŠeλt

t dt Œ

. We have

Z ∞

0

eiµX(t)1l[0,+)(X(t))—€1eνtŠeλt

t dt =

Z ∞

0

E”€eiµX(t)1Š1l[0,+)(X(t))—eλt

t dt− Z ∞

0

E”€eiµX(t)1Š1l[0,+)(X(t))—e −(λ+ν)t

t dt +

Z ∞

0

P{X(t)0}e

λt

e−(λ+ν)t

t dt

=

Z ∞

0 eλt

t dt Z ∞

0 €

eiµξ−1Šp(t;−ξ)dξ− Z ∞

0

e−(λ+ν)t t dt

Z ∞

0 €

eiµξ−1Šp(t;−ξ)dξ

+P{X(1)0} Z ∞

0

eλte−(λ+ν)t

t dt.

In view of (2.12) and (2.13) and using the elementary equalityR0eλtet−(λ+ν)tdt =log€λ+λνŠ, we have

Z ∞

0

eiµX(t)1l[0,+∞)(X(t))

—€

1eνtŠeλt

t dt =log

‚ Y

jJ N p

λ

N p

λiµθj

Œ −log

‚ Y

jJ N p

λ+ν

N p

λ+νiµθj

Œ

+ #J N log

λ+ν

λ

=log Y

jJ N p

λ+νiµθj N

p

λiµθj

!

.

We then deduce the value ofS+(λ,µ,ν). By (2.2),

S+(λ,µ,ν) =Y jJ

N p

λiµθj

N p

λ+νiµθj =

QN =1(

N p

λiµθℓ)

Q

jJ( N p

λ+νiµθj)

Q

kK( N p

λiµθk) = λκN()

N

Q

jJ( N p

λ+νiµθj)

Q

kK( N p

λiµθk)


(13)

Similarly, the value ofS−(λ,µ,ν)is given by

S−(λ,µ,ν) =Y kK N p

λ+νiµθk N

p

λiµθk

= λ+νκN() N

Q

jJ( N p

λ+νiµθj)

Q

kK( N p

λiµθk)

. (3.6)

Finally, putting (3.5) and (3.6) into (3.4) immediately leads to (3.3). „

Remark 3.1. We can rewrite (3.3) as

E(λ,µ,ν) = 1

λ#NK(λ+ν)

#J N

Y

jJ N p

λ+ν

N p

λ+νiµθj Y

kK N p

λ

N p

λiµθk

. (3.7)

Actually, this form is more suitable for the inversion of the Laplace-Fourier transform.

In the three next sections, we progressively invert the 3-parameters Laplace-Fourier transform

E(λ,µ,ν).

4

Inverting with respect to

µ

In this part, we invertE(λ,µ,ν)given by (3.7) with respect toµ.

Theorem 4.1. We have, forλ,ν >0, Z ∞

0

eλtE eνT(t),X(t)dx/dxdt

=

   

   

1 λ#KN−1(λ+ν)

#J−1

N

X

jJ Ajθj

X

kK

Bkθk

θk N p

λθj N p

λ+ν !

eθj Np

λ+νx if x ≥0, 1

λ#KN−1(λ+ν)

#J−1

N

X

kK Bkθk

X

jJ

Ajθj θk

N p

λθj N p

λ+ν !

eθk Np

λx if x ≤0.

(4.1)

PROOF

By (2.6) applied tox =iµ/Np

λ+ν andx =iµ/Npλ, we have

Y

jJ N p

λ+ν

N p

λ+νiµθj Y

kK N p

λ

N p

λiµθk =Y

jJ

1 1 Np

λ+νθj

Y

kK

1 1 Np

λθk =X

jJ

Ajθj

θj Np

λ+ν

X

kK Bkθk θk

Np

λ = pN λ(λ+ν)X

jJ kK

AjBkθjθk (θj

N p

λ+ν)(θk N p


(14)

Let us write that 1

(θjNp

λ+ν)(θkNpλ) =

1 θkNpλθjpN

λ+µ

1 θj

N p

λ+ν− 1 θkpN λ

!

= 1

θk N p

λθjN

p λ+µ

Z ∞

0

e(θjN p

λ+µ)xdx+

Z 0

−∞ e(θk

Np λ)xdx

!

.

Therefore, we can rewriteE(λ,µ,ν)as

E(λ,µ,ν) = 1

λ#KN−1(λ+ν)

#J−1

N

×X

jJ kK

AjBkθjθk

θk N p

λθj N p

λ+ν Z ∞

−∞ eiµx

eθk

Np λx1l

(−∞,0](x) +eθj

Npλ+ν x1l

[0,∞)(x)

dx

which is nothing but the Fourier transform with respect toµof the right-hand side of (4.1). „

Remark 4.1. One can observe that formula (24) in [11]involves the density of(T(t),X(t)), this latter being evaluated at the extremity X(t) = 0 when the starting point is x. By invoking the duality, we could derive an alternative representation for (4.1). Nevertheless, this representation is not tractable for performing the inversion with respect toν.

Example 4.1. For N =3, we have two cases to consider. Although this situation is not correctly defined, (4.1) writes formally, with the numerical values of Example 2.1, in the caseκ3=1, Z ∞

0

eλt

E eνT(t),X(t)dx /dx

dt

=

    

    

e−p3λ+νx

λ2/3+p3

λ(λ+ν) + (λ+ν)2/3 if x ≥0, e

3pλ 2 x

p

3p3 λ

p

3p3λcos€

p

33pλ

2 x Š

−(2p3 λ+ν+p3 λ)sin€

p

3p3λ

2 x Š

λ2/3+p3

λ(λ+ν) + (λ+ν)2/3 if x ≤0,

and in the caseκ3=−1, Z ∞

0

eλtE eνT(t),X(t)dx/dxdt

=

   

   

e

3pλ+ν 2 x

p

3p3 λ+ν

p

3p3 λ+ν cos€p33pλ+ν

2 x Š

+ (p3 λ+ν+2p3 λ)sin€p3p3λ+ν

2 x Š

λ2/3+p3

λ(λ+ν) + (λ+ν)2/3 if x ≥0, e3pλx

λ2/3+p3


(15)

Example 4.2. ForN =4, formula (4.1) supplies, with the numerical values of Example 2.2,

Z ∞

0

eλtE eνT(t),X(t)dx/dxdt

=

    

    

p

2e

4

p

λ+ν

p

2 x 4

p

λ+ν(pλ+pλ+ν)(p4 λ+p4 λ+ν)

–

4

p

λ+ν cos

‚p4

λ+ν

p

2 x

Œ

+p4 λsin

‚p4

λ+ν

p

2 x

Ϊ

if x ≥0,

p

2e

4pλ

p

2 x 4

p

λ(pλ+pλ+ν)(p4 λ+p4 λ+ν)

–

4

p λcos

‚p4

λ

p

2 x

Œ

−p4 λ+ν sin

‚p4

λ

p

2 x

Ϊ

if x 0.

5

Inverting with respect to

ν

In this section, we carry out the inversion with respect to the parameterν. The cases x ≤ 0 and

x 0 lead to results which are not quite analogous. This is due to the asymmetry of our problem. So, we split our analysis into two subsections related to the casesx 0 andx 0.

5.1

The case

x

0

Theorem 5.1. The Laplace transform with respect to t of the density of the couple(T(t),X(t))is given, when x≤0, by

Z ∞

0

eλt[P{T(t)ds,X(t)dx}/(dsdx)]dt

= eλs

λ#KN−1s

#K N

#K

X

m=0

αm(λs)mNE

1,m+#J

N

(λs)X kK

Bkθkm+1eθk Np

λx. (5.1)

PROOF

Recall (4.1) in the casex ≤0:

Z ∞

0

eλt

E eνT(t),X(t)dx /dx

dt

= 1

λ#KN−1(λ+ν)

#J−1

N

X

kK Bkθk

X

jJ

Ajθj

θk N p

λθj N p

λ+ν !

eθk Np

λx.

We have to invert with respect toν the quantity 1

(λ+ν)#JN−1

X

jJ

Ajθj

θk N p

λθj N p

λ+ν =− X

jJ

Aj

(λ+ν)#JN−1(pN λ+νθk θj

N p

λ)

.

By using the following elementary equality, which is valid forα >0, 1

(λ+ν)α =

1

Γ(α)

Z ∞

0

e−(λ+ν)ssα−1ds=

Z ∞

0 eνs

‚

−1eλs Γ(α)

Œ


(16)

we obtain, for|β|< pN λ+ν, 1

N p

λ+νβ = 1

N p

λ+ν 1 1 Npβ

λ+ν =

X

r=0 βr

(λ+ν)r+1N =

X

r=0 βr

Γ€r+1 N

Š Z ∞

0

e−(λ+ν)ssr+1N −1ds

=

Z ∞

0

eνs sN1−1eλs

X

r=0

(βNps)r Γ€r+1

N

Š !

ds.

The sum lying in the last displayed equality can be expressed by means of the Mittag-Leffler function (see[7, Chap.XVIII]): Ea,b(ξ) =

P∞

r=0

ξr

Γ(ar+b). Then,

1

N p

λ+νβ = Z ∞

0 eνs

sN1−1eλsE1

N,

1

N (βpN

s)ds. (5.2)

Next, we write

X

jJ

Aj N

p

λ+νθk θj N p λ = Z ∞ 0 eνs

–

sN1−1eλs

X

jJ AjE1

N, 1 N ‚ θk θj N p λs Œ™

ds, (5.3)

where

X

jJ AjE1

N, 1 N ‚ θk θj N p λs Œ =X jJ

Aj

X

r=0 ‚

θk

θj

Œr

(λs)Nr Γ€r+N1Š=

X

r=0

θkr X

jJ Aj

θjr !

(λs)Nr Γ€r+N1Š.

When performing the euclidian division of r by N, we can write r as r =ℓN+mwith≥0 and 0mN1. With this, we haveθj r= (θjN)−ℓθj m=κℓ

m j andθ

r k =κ

m k . Then,

θkr X

jJ Aj

θjr =θ

m k

X

jJ Aj

θmj =θ

m k αm.

Hence, since by (2.9) theαm, #K+1≤mN, vanish,

X

jJ AjE1

N, 1 N ‚ θk θj N p λs Œ = ∞ X

=0 #K

X

m=0

αmθkm

(λs)+mN Γ€+ m+1

N

Š = #K

X

m=0

αmθkm(λs) m NE

1,mN+1(λs)

and (5.3) becomes

X

jJ

Aj N

p

λ+νθk θj N p λ = Z ∞ 0

eνs sN1−1eλs

#K

X

m=0

αmθkm(λs) m NE

1,mN+1(λs) !

ds.

As a result, by introducing a convolution product, we obtain

Z ∞

0

eλtE eνT(t),X(t)dx/dxdt = 1

λ#KN−1

X

kK

Bkθkeθk Np


(17)

× Z ∞

0 eνs

 Z s

0

σ#JN−1−1eλσ Γ€#J−1

N

Š ×e

λ(sσ)

#K

X

m=0

αmθkmλmN(sσ) m+1

N −1E

1,mN+1(λ(sσ))dσ

ds.

By removing the Laplace transforms with respect to the parameterνof each member of the foregoing equality, we extract

Z ∞

0

eλt[P{T(t)ds,X(t)dx}/(dsdx)]dt

= eλs

λ#KN−1

#K

X

m=0 α

m N

X

kK

Bkθkm+1eθk Np

λx

!Z s

0

σ#JN−1−1 Γ€#J−1

N

Š(sσ)

m+1

N −1E

1,m+1

N

(λ(sσ))dσ.

The integral lying on the right-hand side of the previous equality can be evaluated as follows:

Z s

0

σ#JN−1−1

Γ€#JN−1Š(sσ) m+1

N −1E

1,mN+1(λ(sσ))dσ= Z s

0

σ#JN−1−1

Γ€#JN−1Š(sσ) m+1

N −1 ∞

X

=0

λℓ(sσ) Γ€+mN+1Šdσ =

X

=0 λℓ

Z s

0

σ#JN−1−1 Γ€#J−1

N

Š

(sσ)+mN+1−1 Γ€+ m+1

N

Š dσ

= ∞

X

=0

λℓsℓ+m+#N J−1 Γ€+m+#J

N

Š =s

m+#J N −1E

1,m+#J

N (λs)

from which we deduce (5.1). „

Remark 5.1. An alternative expression for formula (5.1) is for x 0

Z ∞

0

eλt[P{T(t)ds,X(t)dx}/(dsdx)]dt = e

λs

λ#KN−1s

#K N

X

jJ kK

AjBkθkE1

N,

#J N

‚ θk

θj N

p λs

Œ eθk

Np

λx. (5.4)

In effect, by (5.1),

Z ∞

0

eλt[P{T(t)ds,X(t)dx}/(dsdx)]dt

= eλs

λ#KN−1s

#K N

X

=0 #K

X

m=0 X

kK

αmBkθkm+1

(λs)+mN Γ€+m+#J

N

Še

θk Np

λx

= eλs

λ#KN−1s

#K N

X

=0

N−1 X

m=0 X

jJ kK

AjBkθk

‚ θk θj

Œm

(λs)+mN Γ€+m+#J

N

Še

θk Np


(18)

In the last displayed equality, we have extended the sum with respect tomto the range 0mN1 because, by (2.9), theαm, #K+1≤ mN−1, vanish. Let us introduce the index r=ℓN+m.

Since



θk θj

‹m

=



θk θj

‹r

, we have

Z ∞

0

eλt[P{T(t)ds,X(t)dx}/(dsdx)]dt = eλs

λ#KN−1s

#K N

X

jJ kK

AjBkθk

X

r=0 

θk θj N p

λs ‹r

Γ€r+#J N

Š e

θk Np

λx

which coincide with (5.4).

Example 5.1. CaseN =3. We have formally forx ≤0, whenκ3=−1: Z ∞

0

eλt[P{T(t)ds,X(t)dx}/(dsdx)]dt=e3 p

λx

‚ eλs

3

p s E1,23

(λs) 3

p λ

Œ

and whenκ3=1: Z ∞

0

eλt[P{T(t)ds,X(t)dx}/(dsdx)]dt

= eλs+3

p

λ

2 x

p

33

p λs2

•p

3 cos

p3p3 λx

2

‹

3

p λs E1,2

3

(λs)(λs)2/3eλs ‹

+sin

p3p3 λx

2

‹

3

p λs E1,2

3

(λs) + (λs)2/3eλs2E1,1 3

(λs)

‹˜

.

Example 5.2. CaseN =4. We have, for x0,

Z ∞

0

eλt[P{T(t)ds,X(t)dx}/(dsdx)]dt

= p

2eλs+

4p

λ

p

2x 4

p

λps •

cos

p4 λx p

2

‹

4

p λs E1,3

4

(λs)pλs eλs ‹

+sin

p4 λx p

2

‹

4

p λs E1,3

4

(λs)E1,1 2

(λs)

‹˜

.

5.2

The case

x

0

Theorem 5.2. The Laplace transform with respect to t of the density of the couple(T(t),X(t))is given, when x0, by

Z ∞

0

eλt[P{T(t)ds,X(t)dx}/(dsdx)]dt = e

λs

λ#KN−1

X

jJ kK

AjBkθk

Z s

0

σN1−1E1

N,

1

N

‚ θk

θj N

p λσ

Œ

Ij,#J1(sσ;x)dσ (5.5)


(1)

=exp

X

n=1

eiµXn−νn1l[0,+∞)(Xnz

n

n

!

.

The proof of (7.1) is finished.

Step 3.

Using the elementary identityea1lA(x)1= (ea1)1l

A(x)and noticing thatTk=Tk−1+1l[0,+∞)(Xk), we get for anyk1,

eiµXk−νTk1l

[0,+∞)(Xk) —

=E

–

eiµXk−νTk e

ν1l[0,+∞)(Xk)1 −1

™

= 1

−1 ”

eiµXk−νTk−1ŠE€eiµXkνTkŠ—.

Now, since Xk=Xk1+ξk where Xk−1 andξkare independent andξk have the same distribution asξ1, we have, fork≥1,

eiµXk−νTk−1Š=E€eiµξE€eiµXk−1−νTk−1Š.

Therefore,

X

k=1

eiµXkνTk1l

[0,+∞)(Xk) —

zk= 1 −1

X

k=1 €

eiµXk−νTk−1—E”eiµXkνTk—Šzk

= 1

−1 E €

eiµξ1Š ∞

X

k=1

eiµXk−1−νTk−1—zk

X

k=1

eiµXkνTk—zk

!

= 1

1

€

zeiµξ1Š ∞

X

k=0

eiµXk−νTk—zk+1

!

. (7.4)

By putting (7.1) into (7.4), we extract

X

k=0

eiµXk−νTk1l

[0,+∞)(Xk) —

zk= 1 1

”

−€1−zeiµξ1ŠŠS(µ,ν,z)— (7.5)

where we set

S(µ,ν,z) =exp

X

k=1

eiµXk−νk1l[0,+∞)(Xkz

k

k

!

.

Next, using the elementary identity 1ζ=exp[log(1ζ)] =exp”P∞k=1ζk/k—valid for|ζ|<1,

1zeiµξ=exp

X

k=1 ”

eiµξ1Š—kz

k

k

!

=exp

X

k=1

eiµXkŠz

k

k

!

and then €

1zeiµξ1ŠŠS(µ,ν,z) =exp

X

k=1

eiµXk−νk1l[0,+∞)(Xk)eiµXk—z

k

k


(2)

=exp

X

k=1 €

1eνkŠE”eiµXk1l

[0,+∞)(Xk) —zk

k

!

. (7.6)

Hence, by putting (7.6) into (7.5), formula (7.2) entails.

By subtracting (7.5) from (7.1), we obtain the intermediate representation

X

k=0

eiµXk−νTk1l

(−∞,0)(Xk) —

zk= 1 1

”€

zeiµξ1ŠŠS(µ,ν,z)eν—.

By writing, as previously,

zeiµξ=eνexp

X

k=1

eiµXkŠeνkzk

k

!

, we find

€

zeiµξ1ŠŠS(µ,ν,z) =eνexp

X

k=1

eiµXkνk1l[0,+∞)(Xk)eiµXkνk—z

k

k

!

=exp

X

k=1 €

1−eνkŠE”eiµXk1l

(−∞,0)(Xk) —zk

k

!

. Finally, (7.3) ensues. „

Lemma 7.2. The following identities hold:

β#K = (−1)#K−1 Y

kK

θk, β#K+1= (−1)#K−1 Y

kK

θk !

X

kK

θk !

.

PROOF

We label the setKas{1, 2, 3, . . . , #K}. By (2.5), we know that theBk’s solve a Vandermonde system. Then, by Cramer’s formulas, we can write them as fractions of some determinants: Bk=Vk/V where

V =

1 . . . 1

θ1 . . . θ#K

θ12 . . . θ#K2

..

. ...

θ1#K−1 . . . θ#K#K−1

and Vk=

1 . . . 1 1 1 . . . 1

θ1 . . . θk−1 0 θk+1 . . . θ#K

θ12 . . . θk21 0 θk2+1 . . . θ#K2

..

. ... ... ... ...

θ1#K−1 . . . θk#K1−1 0 θk#K+1−1 . . . θ#K#K−1

.

By expanding the determinantVkwith respect to its kth column and next factorizing it suitably, we easily see that

Vk= (1)k+1

θ1 . . . θk−1 θk+1 . . . θ#K

θ2

1 . . . θk2−1 θ 2

k+1 . . . θ 2 #K ..

. ... ... ...

#K−1 #K−1 #K−1 #K−1


(3)

= (1)k+1

Q iKθi

θk

1 . . . 1 1 . . . 1

θ1 . . . θk−1 θk+1 . . . θ#K

θ12 . . . θk21 θk2+1 . . . θ#K2

..

. ... ... ...

θ1#K−2 . . . θk#K1−2 θk#K+1−2 . . . θ#K#K−2

.

With this at hands, we have

β#K= X

kK

Bkθk#K=

Q kKθk

V

X

kK

(1)k+1θk#K−1

1 . . . 1 1 . . . 1

θ1 . . . θk−1 θk+1 . . . θ#K

θ12 . . . θk21 θk2+1 . . . θ#K2

..

. ... ... ...

θ1#K−2 . . . θk#K1−2 θk#K+1−2 . . . θ#K#K−2

.

We can observe that the sum lying on the above right-hand side is nothing but the expansion of the determinantV with respect to its last row multiplied by the sign(1)#K−1. This immediately ensues thatβ#K = (−1)#K−1

Q

kKθk. Similarly,

β#K+1= X

kK

Bkθk#K+1= Q

kKθk

V

X

kK

(1)k+1θk#K

1 . . . 1 1 . . . 1

θ1 . . . θk−1 θk+1 . . . θ#K

θ12 . . . θk21 θk2+1 . . . θ#K2

..

. ... ... ...

θ1#K−2 . . . θk#K1−2 θk#K+1−2 . . . θ#K#K−2

.

The above sum is the expansion with respect to its last row, multiplied by the sign(1)#K−1, of the determinantV′defined as

V′=

1 . . . 1

θ1 . . . θ#K

θ2

1 . . . θ#K2 ..

. ...

θ1#K−2 . . . θ#K#K−2 θ1#K . . . θ#K#K

.

Let R0,R1,R2, . . . ,R#K2,R#K1 denote the rows of V′. We perform the substitution R#K1 R#K−1+

P#K

=2(−1)

σ

ℓR#K− where the σℓ’s are defined by (2.3). This substitution does not

af-fect the value ofV′and it transforms, e.g., the first term of the last row into

θ1#K+

#K X

=2

(1)ℓσℓθ1#K−.

Recall thatσℓ=

P

1≤k1<···<kℓ≤#Kθk1. . .θkℓ. We decomposeσℓ, by isolating the terms involvingθ1,

into

θ1

X

2≤k2<···<kℓ≤#K

θk2. . .θkℓ+

X

2≤k1<k2<···<kℓ≤#K

θk1θk2. . .θkℓ=θ1σ


(4)

where we setσ#K =0 andσ=P2k

1<k2<···<kℓ≤#Kθk1θk2. . .θkℓ. Therefore, we have

θ1#K+

#K X

=2

(1)ℓσℓθ1#K−=θ #K

1 +

#K X

=2

(1)ℓσ1θ1#K−+1+

#K X

=2

(1)ℓσθ1#K−

=θ1#K+σ1θ1#K−1=θ1#K−1(θ1+σ′1) =θ #K−1 1

X

kK

θk !

.

The foregoing manipulation works similarly for each term of the last row ofV′. So, we deduce that

V′=€PkKθk Š

V and finallyβ#K+1= (−1)#K−1 €Q

kKθk Š€P

kKθk Š

. „

Lemma 7.3. For any integer mN1and any x0,

Z ∞ 0

eλuIj,m(u;x)du=λmNeθj Np

λx. (2.15)

PROOF

This formula is proved in[13]for 0≤mN−1. To prove that it holds true also for negative m, we directly compute the Laplace transform ofIj,m(u;x). We have

Z ∞ 0

eλuIj,m(u;x)du=

N i

2π

‚

eimNπ

Z ∞ 0

ξNm−1 ξN+λ e

θjei

π

Nxξdξ

eimNπ

Z ∞ 0

ξNm−1 ξN+λ e

θjei

π

Nxξdξ

Π.

Let us integrate the functionH:zzzNM+−1λe

az for fixeda andM such that

ℜ(a)>0 andM >0 on the contourΓR={ρeiϕ ∈C:ϕ=0,ρ∈[0,R]} ∪ {ρeiϕ ∈C:ϕ∈(0,−2Nπ),ρ=R} ∪ {ρeiϕ ∈C:

ϕ=2π

N ,ρ∈(0,R]}. We get, by residues theorem,

Z ∞ 0

zM−1 zN+λe

azdz+e−2iMNπ

Z ∞ 0

zM−1 zN+λe

aei2Nπzdz=2i

πResidue 

H,N p

λeiNπ

‹

= 2 N

€Np

λŠM−NeiMNNπea Np

λeiNπ

= 2π N i λ

M N−1ei

M Nπea

Np

λeiπN

. ForM=Nmanda=θjei

π

Nx, this yields

Z ∞ 0

eλuIj;m(u;x)du=−ei

m Nπλ

m N ×(−ei

m )e−θj

Np

λx =λm Neθj

Np

λx.

Hence, (2.15) is valid formN−1. „

References


(5)

[2] Beghin, L., Hochberg, K.-J. and Orsingher, E.: Conditional maximal distributions of processes related to higher-order heat-type equations. Stochastic Process. Appl. 85 (2000), no. 2, 209– 223. MR1731022

[3] Beghin, L. and Orsingher, E.: The distribution of the local time for “pseudoprocesses” and its connection with fractional diffusion equations. Stochastic Process. Appl. 115 (2005), 1017– 1040. MR2138812

[4] Beghin, L., Orsingher, O. and Ragozina, T.: Joint distributions of the maximum and the process for higher-order diffusions. Stochastic Process. Appl. 94 (2001), no. 1, 71–93. MR1835846

[5] Bohr, H.: Über die gleichmässige Konvergenz Dirichletscher Reihen. J. für Math. 143 (1913), 203–211.

[6] Cammarota, V. and Lachal, A.: arXiv:1001.4201[math.PR].

[7] Erdélyi, A., Ed.: Higher transcendental functions, vol. III, Robert Krieger Publishing Company, Malabar, Florida, 1981. MR0698781

[8] Hochberg, K.-J.: A signed measure on path space related to Wiener measure. Ann. Probab. 6 (1978), no. 3, 433–458. MR0490812

[9] Hochberg, K.-J. and Orsingher, E.: The arc-sine law and its analogs for processes governed by signed and complex measures. Stochastic Process. Appl. 52 (1994), no. 2, 273–292. MR1290699

[10] Krylov, V. Yu.: Some properties of the distribution corresponding to the equation ut = (1)q+12q2qux. Soviet Math. Dokl. 1 (1960), 760–763. MR0118953

[11] Lachal, A.: Distribution of sojourn time, maximum and minimum for pseudo-processes gov-erned by higer-order heat-typer equations. Electron. J. Probab. 8 (2003), paper no. 20, 1–53. MR2041821

[12] Lachal, A.: Joint law of the process and its maximum, first hitting time and place of a half-line for the pseudo-process driven by the equation t = ±xNN. C. R. Acad. Sci. Paris, Sér. I 343

(2006), no. 8, 525–530. MR2267588

[13] Lachal, A.: First hitting time and place, monopoles and multipoles for pseudo-procsses driven by the equation t =±∂N

∂xN. Electron. J. Probab. 12 (2007), 300–353. MR2299920

[14] Lachal, A.: First hitting time and place for the pseudo-process driven by the equation t = ±xnn subject to a linear drift. Stoch. Proc. Appl. 118 (2008), 1–27. MR2376250

[15] Nakajima, T. and Sato, S.: On the joint distribution of the first hitting time and the first hitting place to the space-time wedge domain of a biharmonic pseudo process. Tokyo J. Math. 22 (1999), no. 2, 399–413. MR1727883

[16] Nikitin, Ya. Yu. and Orsingher, E.: On sojourn distributions of processes related to some higher-order heat-type equations. J. Theoret. Probab. 13 (2000), no. 4, 997–1012. MR1820499


(6)

[17] Nishioka, K.: Monopole and dipole of a biharmonic pseudo process. Proc. Japan Acad. Ser. A 72 (1996), 47–50. MR1391894

[18] Nishioka, K.: The first hitting time and place of a half-line by a biharmonic pseudo process. Japan J. Math. 23 (1997), 235–280. MR1486514

[19] Nishioka, K.: Boundary conditions for one-dimensional biharmonic pseudo process. Electronic Journal of Probability 6 (2001), paper no. 13, 1–27. MR1844510

[20] Orsingher, E.: Processes governed by signed measures connected with third-order “heat-type” equations. Lithuanian Math. J. 31 (1991), no. 2, 220–231. MR1161372

[21] Spitzer, F.: A combinatorial lemma and its application to probability theory. Trans. Amer. Math. Soc. 82 (1956), 323–339. MR0079851


Dokumen yang terkait

AN ALIS IS YU RID IS PUT USAN BE B AS DAL AM P E RKAR A TIND AK P IDA NA P E NY E RTA AN M E L AK U K A N P R AK T IK K E DO K T E RA N YA NG M E N G A K IB ATK AN M ATINYA P AS IE N ( PUT USA N N O MOR: 9 0/PID.B /2011/ PN.MD O)

0 82 16

ANALISIS FAKTOR YANGMEMPENGARUHI FERTILITAS PASANGAN USIA SUBUR DI DESA SEMBORO KECAMATAN SEMBORO KABUPATEN JEMBER TAHUN 2011

2 53 20

EFEKTIVITAS PENDIDIKAN KESEHATAN TENTANG PERTOLONGAN PERTAMA PADA KECELAKAAN (P3K) TERHADAP SIKAP MASYARAKAT DALAM PENANGANAN KORBAN KECELAKAAN LALU LINTAS (Studi Di Wilayah RT 05 RW 04 Kelurahan Sukun Kota Malang)

45 393 31

FAKTOR – FAKTOR YANG MEMPENGARUHI PENYERAPAN TENAGA KERJA INDUSTRI PENGOLAHAN BESAR DAN MENENGAH PADA TINGKAT KABUPATEN / KOTA DI JAWA TIMUR TAHUN 2006 - 2011

1 35 26

A DISCOURSE ANALYSIS ON “SPA: REGAIN BALANCE OF YOUR INNER AND OUTER BEAUTY” IN THE JAKARTA POST ON 4 MARCH 2011

9 161 13

Pengaruh kualitas aktiva produktif dan non performing financing terhadap return on asset perbankan syariah (Studi Pada 3 Bank Umum Syariah Tahun 2011 – 2014)

6 101 0

Pengaruh pemahaman fiqh muamalat mahasiswa terhadap keputusan membeli produk fashion palsu (study pada mahasiswa angkatan 2011 & 2012 prodi muamalat fakultas syariah dan hukum UIN Syarif Hidayatullah Jakarta)

0 22 0

Pendidikan Agama Islam Untuk Kelas 3 SD Kelas 3 Suyanto Suyoto 2011

4 108 178

ANALISIS NOTA KESEPAHAMAN ANTARA BANK INDONESIA, POLRI, DAN KEJAKSAAN REPUBLIK INDONESIA TAHUN 2011 SEBAGAI MEKANISME PERCEPATAN PENANGANAN TINDAK PIDANA PERBANKAN KHUSUSNYA BANK INDONESIA SEBAGAI PIHAK PELAPOR

1 17 40

KOORDINASI OTORITAS JASA KEUANGAN (OJK) DENGAN LEMBAGA PENJAMIN SIMPANAN (LPS) DAN BANK INDONESIA (BI) DALAM UPAYA PENANGANAN BANK BERMASALAH BERDASARKAN UNDANG-UNDANG RI NOMOR 21 TAHUN 2011 TENTANG OTORITAS JASA KEUANGAN

3 32 52