Dirichlet coefficients of a product of L-functions. The aim of

Special values of symmetric power L-functions and Hecke eigenvalues 729 uniformely for N ∈ N max ω · 12r , [ |z|ω·] 1r+σ , [ |z| 2 ω ·] 12σ , z ∈ C. Proof. Write Ψ z m,ℓ p := Z SU2 Dp −s , Sym m , g z Dp −ρ , Sym ℓ , g dg. Using 35 and the orthogonality of characters, we have Ψ z m,ℓ p = + ∞ X ν 1 =0 + ∞ X ν 2 =0 p −ν 1 s −ν 2 ρ minmν 1 ,ℓν 2 X ν=0 µ z,ν 1 Sym m ,Sym ν µ 1,ν 2 Sym ℓ ,Sym ν . Proposition 2 gives Ψ z m,ℓ p − 1 ≤ + ∞ X ν 2 =2 ν 2 + ℓ ν 2 1 p rν 2 + |z| p σ + ∞ X ν 2 =1 ν 2 + ℓ ν 2 1 p rν 2 + + ∞ X ν 1 =2 m + 1 |z| + ν 1 − 1 ν 1 1 p σν 1 + ∞ X ν 2 =0 ν 2 + ℓ ν 2 1 p rν 2 ≪ m,ℓ 1 p 2r + |z| p r+σ + |z| 2 p 2σ which leads to the result. Using 49 we similarly can prove the Lemma 8. Let m ≥ 1. Then we have Z SU2 Dp −1 , Sym m , g z Dp −12 , St, g dg = 1 + O m |z| p 1+m2 uniformely for z ∈ C and p ≥ m + 1|z| + 3.

2.3. Dirichlet coefficients of a product of L-functions. The aim of

this section is to study the Dirichlet coefficients of the product Ls, Sym 2 f Ls, Sym m f z . Define λ 1,z,ν Sym 2 ,Sym m g for every g ∈ SU2 by the expansion 59 Dx, Sym 2 , gDx, Sym m , g z =: + ∞ X ν=0 λ 1,z,ν Sym 2 ,Sym m gx ν . We have 60 λ 1,z,ν Sym 2 ,Sym m g = X ν 1 ,ν 2 ∈Z 2 ≥0 ν 1 +ν 2 =ν λ 1,ν 1 Sym 2 gλ z,ν 2 Sym m g 730 Emmanuel Royer, Jie Wu from that we deduce, using 50, that λ 1,z,ν Sym 2 ,Sym m g ≤ m + 1 |z| + 2 + ν ν . Since λ 1,z,ν Sym 2 ,Sym m is central, there exists µ 1,z,ν Sym 2 ,Sym m ,Sym m′ m ′ ∈Z ≥0 such that, for all g ∈ SU2 we have 61 λ 1,z,ν Sym 2 ,Sym m g = + ∞ X m ′ =0 µ 1,z,ν Sym 2 ,Sym m ,Sym m′ χ Sym m′ g where µ 1,z,ν Sym 2 ,Sym m ,Sym m′ = Z SU2 λ 1,z,ν Sym 2 ,Sym m gχ Sym m′ g dg = 2 π Z π λ 1,z,ν Sym 2 ,Sym m g sin[m ′ + 1θ] sin θ dθ. 62 The Clebsh-Gordan relation [Vil68, §III.8] is 63 χ Sym m′1 χ Sym m′2 = minm ′ 1 ,m ′ 2 X r=0 χ Sym m′1+m ′ 2−2r . In addition with 60 and 46, this relation leads to 64 µ 1,z,ν Sym 2 ,Sym m ,Sym m′ = X ν 1 ,ν 2 ∈Z 2 ≥0 ν 1 +ν 2 =ν 2ν 1 X m ′ 1 =0 mν 2 X m ′ 2 =0 |m ′ 2 −m ′ 1 |≤m ′ ≤m ′ 1 +m ′ 2 m ′ 1 +m ′ 2 ≡m ′ mod 2 µ 1,ν 1 Sym 2 ,Sym m′1 µ z,ν 2 Sym m ,Sym m′2 . It follows immediately from 64 that µ 1,z,ν Sym 2 ,Sym m ,Sym m′ = 0 if m ′ max2, mν. Using also 38, we obtain µ 1,z,0 Sym 2 ,Sym m ,Sym m′ = δm ′ , 0 and 39 gives µ 1,z,1 Sym 2 ,Sym m ,Sym m′ = zδm ′ , m + δm ′ , 2. Finally, equations 64 and 47 give µ 1,z,ν Sym 2 ,Sym 2m ,Sym 2m′+1 = 0. Special values of symmetric power L-functions and Hecke eigenvalues 731 By equations 60 and 42 we get λ 1,z,ν Sym 2 ,Sym m [gθ] = X ν ′ ,ν ′′ ∈Z 2 ≥0 ν ′ +ν ′′ =ν X ν ′ ,ν ′′ ∈Z 3 ≥0 ×Z m+1 ≥0 tr ν ′ =ν ′ tr ν ′′ =ν ′′   m Y j=0 z + ν ′′ j+1 − 1 ν ′′ j+1   cos[ℓ2, m; ν ′ , ν ′′ θ] with 65 ℓ2, m; ν ′ , ν ′′ = 2ν ′ + mν ′′ − 2 2 X k=1 kν ′ k+1 − 2 m X k=1 kν ′′ k+1 . We deduce then from 62 that µ 1,z,ν Sym 2 ,Sym m ,Sym m′ = 1 2 X ν ′ ,ν ′′ ∈Z 2 ≥0 ν ′ +ν ′′ =ν X ν ′ ,ν ′′ ∈Z 3 ≥0 ×Z m+1 ≥0 tr ν ′ =ν ′ tr ν ′′ =ν ′′   m Y j=0 z + ν ′′ j+1 − 1 ν ′′ j+1   ∆2, m, m ′ ; ν ′ , ν ′′ with 66 ∆2, m, m ′ ; ν ′ , ν ′′ := 4 π Z π cos[ℓ2, m; ν ′ , ν ′′ θ] sin[m ′ + 1θ] sin θ dθ. From max2,mν X m ′ =0 ∆2, m, m ′ ; ν ′ , ν ′′ ≤ 2 we then have max2,mν X m ′ =0 µ 1,z,1 Sym 2 ,Sym m ,Sym m′ ≤ X ν ′ ,ν ′′ ∈Z 2 ≥0 ν ′ +ν ′′ =ν 2 + ν ′ ν ′ m + 1 |z| + ν ′′ − 1 ν ′′ ≤ m + 1 |z| + 2 + ν ′′ ν ′′ . To conclude this study, define the multiplicative function n 7→ λ 1,z Sym 2 f,Sym m f n 732 Emmanuel Royer, Jie Wu by the expansion 67 Ls, Sym 2 f Ls, Sym m f z =: + ∞ X n=1 λ 1,z Sym 2 f,Sym m f nn −s . The preceding results imply the Proposition 9. Let N be a squarefree integer, f ∈ H ∗ 2 N ; let ν ≥ 0 and m 0 be integers and z be a complex number. Then λ 1,z Sym 2 f,Sym m f p ν =                    ν X ν ′ =0 τ z p ν ′ λ f p mν ′ p ν ′ −ν if p | N max2,mν X m ′ =0 µ 1,z,ν Sym 2 ,Sym m ,Sym m′ λ f p m ′ if p ∤ N . Moreover, λ 1,z Sym 2 f,Sym m f p ν ≤ τ m+1 |z|+3 p ν µ 1,z,0 Sym 2 ,Sym m ,Sym m′ = δm ′ , 0 µ 1,z,1 Sym 2 ,Sym m ,Sym m′ = zδm ′ , m + δm ′ , 2 µ 1,z,ν Sym 2 ,Sym 2m ,Sym 2m′+1 = 0, and max2,mν X m ′ =0 µ 1,z,ν Sym 2 ,Sym m ,Sym m′ ≤ m + 1 |z| + 2 + ν ν .

2.4. Trace formulas.

Dokumen yang terkait

AN ALIS IS YU RID IS PUT USAN BE B AS DAL AM P E RKAR A TIND AK P IDA NA P E NY E RTA AN M E L AK U K A N P R AK T IK K E DO K T E RA N YA NG M E N G A K IB ATK AN M ATINYA P AS IE N ( PUT USA N N O MOR: 9 0/PID.B /2011/ PN.MD O)

0 82 16

ANALISIS FAKTOR YANGMEMPENGARUHI FERTILITAS PASANGAN USIA SUBUR DI DESA SEMBORO KECAMATAN SEMBORO KABUPATEN JEMBER TAHUN 2011

2 53 20

EFEKTIVITAS PENDIDIKAN KESEHATAN TENTANG PERTOLONGAN PERTAMA PADA KECELAKAAN (P3K) TERHADAP SIKAP MASYARAKAT DALAM PENANGANAN KORBAN KECELAKAAN LALU LINTAS (Studi Di Wilayah RT 05 RW 04 Kelurahan Sukun Kota Malang)

45 393 31

FAKTOR – FAKTOR YANG MEMPENGARUHI PENYERAPAN TENAGA KERJA INDUSTRI PENGOLAHAN BESAR DAN MENENGAH PADA TINGKAT KABUPATEN / KOTA DI JAWA TIMUR TAHUN 2006 - 2011

1 35 26

A DISCOURSE ANALYSIS ON “SPA: REGAIN BALANCE OF YOUR INNER AND OUTER BEAUTY” IN THE JAKARTA POST ON 4 MARCH 2011

9 161 13

Pengaruh kualitas aktiva produktif dan non performing financing terhadap return on asset perbankan syariah (Studi Pada 3 Bank Umum Syariah Tahun 2011 – 2014)

6 101 0

Pengaruh pemahaman fiqh muamalat mahasiswa terhadap keputusan membeli produk fashion palsu (study pada mahasiswa angkatan 2011 & 2012 prodi muamalat fakultas syariah dan hukum UIN Syarif Hidayatullah Jakarta)

0 22 0

Pendidikan Agama Islam Untuk Kelas 3 SD Kelas 3 Suyanto Suyoto 2011

4 108 178

ANALISIS NOTA KESEPAHAMAN ANTARA BANK INDONESIA, POLRI, DAN KEJAKSAAN REPUBLIK INDONESIA TAHUN 2011 SEBAGAI MEKANISME PERCEPATAN PENANGANAN TINDAK PIDANA PERBANKAN KHUSUSNYA BANK INDONESIA SEBAGAI PIHAK PELAPOR

1 17 40

KOORDINASI OTORITAS JASA KEUANGAN (OJK) DENGAN LEMBAGA PENJAMIN SIMPANAN (LPS) DAN BANK INDONESIA (BI) DALAM UPAYA PENANGANAN BANK BERMASALAH BERDASARKAN UNDANG-UNDANG RI NOMOR 21 TAHUN 2011 TENTANG OTORITAS JASA KEUANGAN

3 32 52