Theoretical Results Optimal Economic Ordering Policy with Trade Credit and Discount Cash-Flow Approach

 ISSN: 1693-6930 TELKOMNIKA Vol. 13, No. 4, December 2015 : 1486 – 1494 1489           4 2 1 1 1 1 1 1 . T r M T rT rT rM T rM p rT rN rM e c hD re e D re e PV T A De e cI e e r r r r pI D rN e rM e r                                                              Case 2 d N T M   .         1 3 4 , , , , , . d d PV T T T PV T PV T T T M PV T M T             Case 3 d M T        1 4 , , , . d d PV T T T PV T PV T T T         

4. Theoretical Results

The objective in this paper is to find the replenishment time T to minimize the present value of all future cash-flow cost of the retailer. To simply the proof process of this model, the following lemma is given. Lemma 1. Let x denotes the minimum point of the function of   F x on interval   , a b . Suppose   f x is continuous function and increasing on   , a b , and       2 1 rx rx F x f x e e     . We have the following results. a if   f a  , then = x a ; b if     f a f b   , then = x x , where x is the unique solution of   f x  on   , a b ; c if   f b  , then = x b . 4.1 when Case 1 Taking derivative of   1 PV T with respect to T , we obtain       2 1 1 1 . rT rT PV T f T e e     where               1 1 1 1 rT rT T rT T p f T r e PV T e D h cI e e r ce               and   1 f rA   . Thus, we know that       1 1 0. T rT p f T De h cI r c e             From the above analysis and lemma 11-2, we have the following results. Lemma 2. Let 1 T is the minimum point of   1 PV T on   0, d T . If   1 d f T  , then 1 d T T  ; else, 1 1 T T  , where 1 T is the unique solution of   1 f T  on   0, d T . Case 2 Taking derivative of   2 PV T with respect to T , we obtain       2 2 2 1 , rT rT PV T f T e e     where           2 2 1 1 . rT rT T rT T rM rN rM e h pI f T r e PV T e D e e ce e e r r                         Similarly, taking derivative of with respect to , we know that       2 1 , rT f T e Dg T   where       . T T rM rN rM e g T he r ce pI e e            Lemma 3. Let 2 T is the minimum point of   2 PV T on   , d T N . 1 when   d g T  a if   2 d f T  , then 2 d T T  ; b if     2 2 d f T f N   , 2 2 T T  , where 2 T is the unique solution of   2 f T  on   , d T N ; c if   2 f N  , then 2 T N  . d T N   d T T   d T T N     2 f T T TELKOMNIKA ISSN: 1693-6930  Optimal Economic Ordering Policy with Trade Credit and Discount Cash-Flow … Hao Jiaqin 1490 2 when     d g T g N   , where 2 T is unique solution of   g T  on   , d T N . i If   2 2 f T  , then 2 d T T  . ii when   2 2 f T  , a if   2 f N  , then         2 2 2 2 min , d PV T PV T PV N  and       2 2 2 a r g m i n , d T P V T P V N  ; b if   2 f N  , when   2 d f T  , 2 2 T T  where 2 T is the unique solution of   2 f T  on   , d T N ; else,         2 2 2 2 2 2 min , d PV T PV T PV T  and       2 2 2 2 2 arg min , d T PV T PV T  , where 2 2 T is the largest solution of   2 f T  on   , d T N ; 3 when   g N  , then         2 2 2 2 min , d PV T PV T PV N  and       2 2 2 arg min , d T PV T PV N  . Proof: Since     T rM g T e h r ce             , we know   g T is increasing on   , d T N . 1 when   d g T  , then   g T  , that is   2 f T  . From lemma 1, the results are proofed. 2 When     d g T g N   , the equation of   g T  has a unique root say 2 T . In this situation,   g T  for  2 , d T T  ,   g T  for 2 , T N     . Thus,   2 f T is decreasing on 2 , d T T     and increasing on  2 , T N  . As follows, we will discuss the property of   2 f T on 2 , d T T     and  2 , T N  . A. In this case we discuss the property of   2 f T on 2 , d T T     . From the above analysis, we know that   2 f T is decreasing on 2 , d T T     , and have the following results. If   2 2 f T  , then we have   2 f T  for  2 , d T T  ; If     2 2 2 d f T f T   , then the equation   2 f T  has a unique root say 1 2 T on   2 , d T T , and   2 f T  for 1 2 , d T T T      ,   2 f T  for   1 2 2 , T T T  ; If   2 d f T  , then   2 f T  on 2 , d T T     . B In this case we discuss the property of   2 f T on  2 , T N  . From the above analysis,   2 f T is increasing on  2 , T N  , and have the following results. If   2 2 f T  , then we have   2 f T  for  2 , T N  ; If     2 2 2 d f T f T   , then the equation   2 f T  has a unique root say 2 2 T on   2 , T N , and   2 f T  for 2 2 , d T T     ,   2 f T  for  2 2 , T N  ; If   2 f N  , then   2 f T  on  2 , T N  . From A and B, we have the following results i if   2 2 f T  , then   2 f T  on   , d T N . Thus,   2 PV T is increasing on   , d T N . Thus, 2 d T T  ; ii if   2 2 f T  , a In this case, we suppose   2 f N  .If   2 d f T  , then   2 f T  ; else,   2 f T  for 1 2 , d T T     and   2 f T  for  1 2 , T N  . therefor, we obtain that if   2 d f T  , then   2 PV T is decreasing on   , d T N ; else,   2 PV T is increasing on 1 2 , d T T     and decreasing on  1 2 , T N  . Hence, when   2 f N  ,         2 2 2 2 min , d PV T PV T PV N  and       2 2 2 a r g m i n , d T P V T P V N  . b In this situation, we suppose   2 f N  . If   2 d f T  , then   2 f T  for 2 2 , d T T     and   2 f T  for  2 2 , T N  . For the convenience of that problem , we denote 2 T is the unique solution of   2 f T  on   , d T N . In this case, 2 2 2 = T T . Thus, we obtain that   2 PV T is decreasing on 2 , d T T     and increasing on  2 , T N  . Thus,     2 2 2 2 PV T PV T  and 2 2 T T  . If   2 d f T  , then   2 f T  for 1 2 , d T T     and  2 2 , T N  ,   2 f T  for  1 2 2 2 , T T  . Thus,   2 PV T is increasing on 1 2 , d T T     and  2 2 , T N  , and decreasing on  1 2 2 2 , T T  . Hence,         2 2 2 2 2 2 min , d PV T PV T PV T  and       2 2 2 2 2 arg min , d T PV T PV T  , where 2 2 T is the largest solution of   2 f T  on   , d T N . 3 when   g N  , we have   g T  . Thus,   2 f T is decreasing on   , d T N .  ISSN: 1693-6930 TELKOMNIKA Vol. 13, No. 4, December 2015 : 1486 – 1494 1491 a if   2 f N  , then   2 f T  . Therefor,   2 PV T is increasing on   , d T N . Thus, 2 d T T  ; b if     2 2 d f N f T   , there exists a unique solution 3 2 T on   3 2 2 f T  , and   2 f T  for 3 2 , d T T     ,   2 f T  for  3 2 , T N  .   2 PV T is increasing on 3 2 , d T T     and decreasing on  3 2 , T N  . Hence,         2 2 2 2 min , d PV T PV T PV N  and       2 2 2 arg min , d T PV T PV N  ; c if   2 d f T  , then   2 f T  .   2 PV T is decreasing on   , d T N . Hence, 2 T N  . From the above analysis, we know that when   g N  ,         2 2 2 2 min , d PV T PV T PV N  and       2 2 2 arg min , d T PV T PV N  . Case 3 Taking derivative of   3 PV T with respect to T , we obtain       2 3 3 1 . rT rT PV T f T e e     where           3 3 1 1 1 . rT rT T rT T rM rT rM e h f T r e PV T e D e e ce pI e e r r                         Thus, we know that       3 1 0. rT T T rM rM e f T e D he r ce pI e                From the above analysis and lemma 1, we obtain the lemma 4. Lemma 4. Let 3 T is the minimum point of   3 PV T on   , N M . a if   3 f N  , then 3 T N  ; b if     3 3 f N f M   ,then 3 3 T T  , where 3 T is the unique solution of   3 f T  on   , N M ; c if   3 f M  , then 3 T M  . Case 4 Taking derivative of   4 PV T with respect to T , we obtain       2 4 4 1 , rT rT PV T f T e e     where             4 4 1 1 , T r M p rT rT T rT T rM rT cI h f T r e PV T e D e e ce e e r r                              and   4 lim T f T    . Therefor, we know that         4 1 0. r M T rT rM p f T e D e h r ce cI e                 From the above analysis and lemma 11-2, we obtain the lemma 5. Lemma 5. Let 4 T is the minimum point of   4 PV T on   , M  if   4 f M  , then 4 T M  ; else, 4 4 T T  , where 4 T is the unique solution of   4 f T  on   , M  . From lemmas 2-5, the following theorem is obtained. Theorem 1. The optimal cycle time T and the present value of all future cash-flow cost PV T  will be determined by the following equation             1 1 2 2 3 3 4 4 min , , , PV T PV T PV T PV T PV T   . 4.2 when d N T M   Case 5 , we obtain the following lemma. Lemma 6. Let 5 T is the minimum point of   3 PV T on   , d T M . a if   3 d f T  , then 5 d T T  ; b if     3 3 d f T f M   ,then 5 5 T T  , where 5 T is the unique solution of   3 f T  on   , d T M ; c if   3 f M  , then 5 T M  . From the lemmas of 2, 3and 6, we have the follow theorem. N T M   M T  d T T M   TELKOMNIKA ISSN: 1693-6930  Optimal Economic Ordering Policy with Trade Credit and Discount Cash-Flow … Hao Jiaqin 1492 Theorem 2 when d N T M   , the optimal cycle time T and the present value of all future cash- flow cost PV T  will be determined by the following           1 1 3 5 4 4 min , , PV T PV T PV T PV T   . 4.3 when d M T  Case 6 , we obtain the following lemma. Lemma 7. Let 6 T is the minimum point of   4 PV T on   , d T  . If   4 d f T  , then 6 d T T  ; else, 6 6 T T  , where 6 T is the unique solution of   6 f T  on   , d T  . From the lemma of 2 and 7, we have the theorem 3. Theorem 3 when d M T  , the optimal cycle time T and the present value of all future cash-flow cost PV T  will be determined by the following equation         1 1 4 6 min , . PV T PV T PV T  

5. Numerical examples

Dokumen yang terkait

Analisis Pengaruh Profitabilitas, Likuiditas, Leverage, Free Cash Flow dan Ukuran Perusahaan terhadap Kebijakan Dividen pada Perusahaan Industri Barang Konsumsi yang Terdaftar di Bursa Efek Indonesia (BEI) Periode 2011-2013

6 65 94

Analisis Pengaruh Free Cash Flow, Insider Ownership, Likuiditas, Profitabilitas Dan Leverage Terhadap Dividend Payout Ratio (Pada Perusahaan Manufaktur Sektor Industri Barang Konsumsi Yang Terdaftar Di Bursa Efek Indonesia)

4 120 76

Pengaruh Free Cash Flow, Profitabilitas dan Invesment Oportunity Set Terhadap Kebijakan Dividen Pada Perusahaan yang Terdaftar Di LQ45

5 113 99

Pengaruh Variabel Free Cash Flow, Profitabilitas, dan Kebijakan Hutang Terhadap Kebijakan Pembayaran Dividen Pada Perusahaan yang Tergabung dalam Indeks Saham LQ45

2 95 71

Kemampuan Laba Bersih, Free Cash Flow, dan Arus Kas Operasi Dalam Memprediksi Arus Kas Masa Depan Pada Perusahaan Jasa Pariwisata Yang Terdaftar di Bursa Efek Indonesia

8 85 97

Analsis Pengaruh Free Cash flow Dan Kepemilikan Manajerial Terhadap Kebijakan Hutang Pada Perusahaan Manufaktur Yang Terdaftar Di Bursa Efek Indonesia

3 40 90

Analisis Pengaruh Free Cash Flow dan Kepemilikan ManajerialTerhadap Kebijakan Hutang pada Perusahaan Automotive & Allied Productyang Terdaftar di Bursa Efek Indonesia

0 46 82

Analisis Pengaruh Free Cash Flow Dan Struktur Kepemilikan Saham Terhadap Kebijakan Utang Dengan Investment Opportunity Set Sebagai Variabel Moderating Pada Perusahaan Manufaktur Di Indonesia

1 70 120

Pengaruh Cash Dividend Coverage, Operating Cashflow Per Share, Return On Equity, Return On Assets, Total Assets Turnover, dan Earning Per Share terhadap Harga Saham pada Perusahaan Manufaktur yang Terdaftar di BEI

1 39 84

Payment With Business Credit Cards Helps Maintain Cash Flow

0 0 1