End of proof of Theorem 2 Bounds on singular values Logarithmic potential and Girko’s hermitization method

108 Electronic Communications in Probability We deduce that for any non-decreasing function, f : R + → R + and t 0, Z f xd ν M +N ≤ 2 Z f 2xd ν M + 2 Z f 2xd ν N , where we have used the inequality f x + y ≤ f 2x + f 2 y. Now, in view of Lemma 9, we may apply the above inequality to f x = x α and deduce the statement. ƒ The above corollary settles the problem of the uniform integrability of ln · at +∞ for ν X p n+M . The uniform integrability at 0+ is a much more delicate matter. The next theorem is a deep result of Tao and Vu. Theorem 11 Small singular values, [ 23 , 24 ]. Let M n n ≥1 be a sequence of n ×n complex invertible matrices such that x 7→ x α is uniformly bounded for ν M n n ≥1 for some α 0. There exist c 1 , c such that a.s. for n ≫ 1, s n X n p n + M n ≥ n −c 1 . Moreover for i ≥ n 1 −γ with γ = 0.01, a.s. for n ≫ 1, s n −i X n p n + M n ≥ c i n . Proof. The first statement is Theorem 2.1 in [ 23 ] and the second is contained in [ 24 ] see the proof of Theorem 1.20 and observe that the statement of Proposition 5.1 remains unchanged if we consider a row of the matrix X n + p nM n . ƒ Proof of Theorem 8. By Corollary 10, it is sufficient to prove that x 7→ x −β is uniformly bounded for ν X p n+M and some β 0. We have lim sup n 1 n n X i=1 s −β i X p n + M ∞, By Theorem 11, we may a.s. write for n ≫ 1, 1 n n X i=1 s −β i X p n + M ≤ 1 n ⌊n 1 −γ ⌋ X i=1 n β c 1 + 1 n n X i= ⌊n 1 −γ ⌋+1 c 2  n i ‹ β ≤ n β c 1 −γ + 1 n n X i=1 c 2  n i ‹ β . This last expression is uniformly bounded if 0 β minγc 1 , 1. ƒ

2.4 End of proof of Theorem 2

If ρ is a probability measure on C\{0}, we define ˇ ρ as the pull-back measure of ρ under φ : z 7→ 1 z, for any Borel E in C\{0}, ˇ ρE = ρφ −1 E. Obviously, if ρ n n ≥1 is a sequence of probability measures on C \{0}, then ρ n converges weakly to ρ is equivalent to ˇ ρ n converges weakly to ˇ ρ. On the spectrum of sum and product of non-hermitian random matrices 109 Note that by Theorem 8, a.s. for n ≫ 1, X n is invertible and x 7→ x −β + x β is uniformly bounded for ν X n p n n ≥1 . Also, from the quarter circular law theorem, ν X n p n converges a.s. to a probability distribution with density 1 π p 4 − x 2 1 [0,2] x, see Marchenko-Pastur theorem [ 18 , 25 , 26 ]. From the independence of X i j , Y i j , G i j , H i j , we may apply Corollary 6, Theorem 7 and Theorem 8 conditioned on X i j to M n = zX n p n. We get a.s. µ X −1 Y − µ X −1 H n →∞ 0. By Theorem 11, a.s. for n ≫ 1, X −1 H and G −1 H are invertible, it follows that µ X −1 H − µ G −1 H n →∞ is equivalent to ˇ µ X −1 H − ˇ µ G −1 H n →∞ 0. However since µ M N = µ N M and ˇ µ M = µ M −1 , we get µ X −1 H − µ G −1 H n →∞ is equivalent to µ H −1 X − µ H −1 G n →∞ 0. The right hand side holds by applying again, Corollary 6, Theorem 7 and Theorem 8. 3 Proof of Theorem 4

3.1 Bounds on singular values

Lemma 12 Singular values of sum and product. If M , N are n × n complex matrices, for any α 0, Z x α d ν M +N ≤ 2 1+ α ‚Z x α d ν M + Z x α d ν N Œ , Z x α d ν M N ≤ 2 ‚Z x 2 α d ν M Œ 1 2 ‚Z x 2 α d ν N Œ 1 2 . Proof. The first statement was already treated in the proof of Corollary 10. Also, from [ 15 , Theorem 3.3.16], for all 1 ≤ i, j ≤ n with 1 ≤ i + j ≤ n + 1, s i+ j −1 M N ≤ s i M s j N . Hence, s 2i M N ≤ s 2i −1 M N ≤ s i M s i N . We deduce Z x α d ν M N ≤ 2 n n X i=1 s α i M s α i N . We conclude by applying the Cauchy-Schwarz inequality. ƒ 110 Electronic Communications in Probability

3.2 Logarithmic potential and Girko’s hermitization method

We denote by D ′ C the set of Schwartz distributions endowed with its usual convergence with respect to all infinitely differentiable functions with bounded support. Let P C be the set of probability measures on C which integrate ln |·| in a neighborhood of infinity. For every µ ∈ P C, the logarithmic potential U µ of µ on C is the function U µ : C → [−∞, +∞ defined for every z ∈ C by U µ z = Z C ln |z − z ′ | µdz ′ , in classical potential theory, the definition is opposite in sign. Since ln |·| is Lebesgue locally integrable on C, one can check by using the Fubini theorem that U µ is Lebesgue locally integrable on C. In particular, U µ ∞ a.e. Lebesgue almost everywhere and U µ ∈ D ′ C. Since ln |·| is the fundamental solution of the Laplace equation in C, we have, in D ′ C, ∆U µ = πµ, 1 where ∆ is the Laplace differential operator on C is given by ∆ = 1 4 ∂ 2 x + ∂ 2 y . We now state an alternative statement of Lemma 5 which is closer to Girko’s original method, for a proof see [ 3 , Lemma A.2]. Lemma 13 Girko’s hermitization method. Let A n be a n × n complex random matrix. Suppose that for a.a. z ∈ C, a.s. i ν A n −z tends weakly to a probability measure ν z on R + , ii ln · is uniformly integrable for ν A n −z n ≥1 . Then there exists a probability measure µ ∈ P C such that a.s. j µ A n converges weakly to µ jj for a.a. z ∈ C, U µ z = Z lnx d ν z . Moreover the same holds if we replace i by i’ R lnxd ν A n −z tends to R lnx d ν z . Corollary 14. Let A n , K n , M n be n × n complex random matrices. Suppose that a.s. K n is invertible and ln · is uniformly bounded for ν K n n ≥1 , and for a.a. z ∈ C, a.s. i ν A n +K −1 n M n −z tends weakly to a probability measure ν z , ii ln · is uniformly integrable for ν A n +K −1 n M n −z n ≥1 . Then there exists a probability measure µ ∈ P C such that a.s. j µ M n +K n A n converges weakly to µ, jj in D ′ C, µ = 1 π ∆ Z lnx d ν z . On the spectrum of sum and product of non-hermitian random matrices 111 Proof. If K n is invertible, we write Z lnxd ν M n +K n A n −z = 1 n ln | detA n + K −1 n M n − z| + 1 n ln | det K n | = Z lnxd ν A n +K −1 n M n −z + 1 n ln | det K n |. By assumption, 1 n ln | det K n | = R lnxd ν K n is a.s. bounded. We may thus consider any converging subsequence and apply Lemma 5i’-ii together with 1. ƒ

3.3 End of proof of Theorem 4

Dokumen yang terkait

AN ALIS IS YU RID IS PUT USAN BE B AS DAL AM P E RKAR A TIND AK P IDA NA P E NY E RTA AN M E L AK U K A N P R AK T IK K E DO K T E RA N YA NG M E N G A K IB ATK AN M ATINYA P AS IE N ( PUT USA N N O MOR: 9 0/PID.B /2011/ PN.MD O)

0 82 16

ANALISIS FAKTOR YANGMEMPENGARUHI FERTILITAS PASANGAN USIA SUBUR DI DESA SEMBORO KECAMATAN SEMBORO KABUPATEN JEMBER TAHUN 2011

2 53 20

EFEKTIVITAS PENDIDIKAN KESEHATAN TENTANG PERTOLONGAN PERTAMA PADA KECELAKAAN (P3K) TERHADAP SIKAP MASYARAKAT DALAM PENANGANAN KORBAN KECELAKAAN LALU LINTAS (Studi Di Wilayah RT 05 RW 04 Kelurahan Sukun Kota Malang)

45 393 31

FAKTOR – FAKTOR YANG MEMPENGARUHI PENYERAPAN TENAGA KERJA INDUSTRI PENGOLAHAN BESAR DAN MENENGAH PADA TINGKAT KABUPATEN / KOTA DI JAWA TIMUR TAHUN 2006 - 2011

1 35 26

A DISCOURSE ANALYSIS ON “SPA: REGAIN BALANCE OF YOUR INNER AND OUTER BEAUTY” IN THE JAKARTA POST ON 4 MARCH 2011

9 161 13

Pengaruh kualitas aktiva produktif dan non performing financing terhadap return on asset perbankan syariah (Studi Pada 3 Bank Umum Syariah Tahun 2011 – 2014)

6 101 0

Pengaruh pemahaman fiqh muamalat mahasiswa terhadap keputusan membeli produk fashion palsu (study pada mahasiswa angkatan 2011 & 2012 prodi muamalat fakultas syariah dan hukum UIN Syarif Hidayatullah Jakarta)

0 22 0

Pendidikan Agama Islam Untuk Kelas 3 SD Kelas 3 Suyanto Suyoto 2011

4 108 178

ANALISIS NOTA KESEPAHAMAN ANTARA BANK INDONESIA, POLRI, DAN KEJAKSAAN REPUBLIK INDONESIA TAHUN 2011 SEBAGAI MEKANISME PERCEPATAN PENANGANAN TINDAK PIDANA PERBANKAN KHUSUSNYA BANK INDONESIA SEBAGAI PIHAK PELAPOR

1 17 40

KOORDINASI OTORITAS JASA KEUANGAN (OJK) DENGAN LEMBAGA PENJAMIN SIMPANAN (LPS) DAN BANK INDONESIA (BI) DALAM UPAYA PENANGANAN BANK BERMASALAH BERDASARKAN UNDANG-UNDANG RI NOMOR 21 TAHUN 2011 TENTANG OTORITAS JASA KEUANGAN

3 32 52