getdocaa07. 159KB Jun 04 2011 12:04:50 AM

(1)

in PROBABILITY

ON THE SPECTRUM OF SUM AND PRODUCT OF NON-HERMITIAN

RANDOM MATRICES

CHARLES BORDENAVE

Institut de Mathématiques Toulouse, CNRS and Université de Toulouse III, 118 route de Narbonne, 31062 Toulouse, France

email:

❝❤❛r❧❡s✳❜♦r❞❡♥❛✈❡❅♠❛t❤✳✉♥✐✈✲t♦✉❧♦✉s❡✳❢r

SubmittedOctober 15,2010, accepted in final formJanuary 16,2011 AMS 2000 Subject classification: 60B20 ; 47A10; 15A18

Keywords: generalized eigenvalues, non-hermitian random matrices, spherical law.

Abstract

In this note, we revisit the work of T. Tao and V. Vu on large non-hermitian random matrices with independent and identically distributed (i.i.d.) entries with mean zero and unit variance. We prove under weaker assumptions that the limit spectral distribution of sum and product of non-hermitian random matrices is universal. As a byproduct, we show that the generalized eigenvalues distribution of two independent matrices converges almost surely to the uniform measure on the Riemann sphere

1

Introduction

We start with some usual definitions. We endow the space of probability measures onCwith the

topology of weak convergence: a sequence of probability measures(µn)n1converges weaklytoµ

is for any bounded continuous function f :CR,

Z

f dµn

Z

f dµ

converges to 0 asngoes to infinity. In this note, we shall denote this convergence byµn   n→∞µ. Similarly, for two sequences of probability measures(µn)n≥1,(µ′n)n≥1, we will useµnµnn →∞0,

or say thatµnµntends weakly to 0, if Z

f dµn

Z

f dµn

converges to 0 for any bounded continuous function f. We will say that a measurable function

f :CRisuniformly boundedfor n)n≥1if

lim sup

n→∞ Z

|f|n<.


(2)

Finally, recall that a function f isuniformly integrablefor(µn)n1if lim

t→+∞lim supn→∞ Z

|f|≥t

|f|dµn=0.

The above definitions will also be used for probability measures on R

+ = [0,∞)and functions

f :R+R.

Theeigenvaluesof ann×ncomplex matrixM are the roots inCof its characteristic polynomial.

We label themλ1(M), . . . ,λn(M)so that|λ1(M)| ≥ · · · ≥ |λn(M)| ≥0. We also denote bys1(M)

· · · ≥sn(M)0 thesingular valuesof M, defined for every 1k nbysk(M):=λk(pM M) where M∗ is the conjugate transpose of M. We define the empirical spectral measure and the empirical singular values measure as

µM= 1 n

n

X

k=1

δλk(M) and νM =

1

n n

X

k=1 δsk(M).

Note that µM is a probability measure on C while ν

M is a probability measure on R+. The

generalized eigenvalues of(M,N), two n×n complex matrices, are the zeros of the polynomial det(MzN). IfNis invertible, it is simply the eigenvalues ofN−1M.

Let(Xi j)i,j1and(Yi j)i,j1be independent i.i.d. complex random variables with mean 0 and vari-ance 1. Similarly, let(Gi j)i,j1and(Hi j)i,j1be independent complex centered gaussian variables with variance 1, independent of (Xi j,Yi j). We consider the random matrices Xn = (Xi j)1≤i,jn, Yn= (Yi j)1≤i,jn,Gn= (Gi j)1≤i,jnandHn= (Hi j)1≤i,jn. For ease of notation, we will sometimes

drop the subscriptn. It is known that almost surely (a.s.) fornlarge enough,X is invertible (see the forthcoming Theorem 11) and thenµX−1Y is a well defined random probability measure onC. Now, letµ be the probability measure whose density with respect to the Lebesgue measure on

CR2is

1

π(1+|z|2)2.

Through stereographic projection, µ is easily seen to be the uniform measure on the Riemann sphere. Haagerup and several authors afterwards have independently observed the following beautiful identity (see Krishnapur[17], Rogers[21]and Forrester and Mays[7]).

Lemma 1(Spherical ensemble). For each integer n1, EµG−1H=µ.

By reorganizing the results of Tao and Vu[23,24], we will prove a universality result.

Theorem 2(Universality of generalized eigenvalues). Almost surely, µX−1YµG−1H  

n→∞0. Applying once Lemma 1 and twice Theorem 2, we get

Corollary 3(Spherical law). Almost surely

µX−1Y  

n→∞µ.

This statement was recently conjectured in[21,7]. More generally, our argument also leads to the following universality result for sums and products of random matrices.


(3)

Theorem 4(Universality of sum and product of random matrices). For every integer n, let Mn,Kn,Ln be n×n complex matrices such that, for someα >0,

(i) x7→ xαis uniformly bounded forK

n)n≥1, andLn)n≥1and x7→ x

αis uniformly bounded forMn)n1,

(ii) for almost all (a.a.) z∈C,νK−1

n MnL−1nKn−1L−1n z converges weakly to a probability measureνz. Then, almost surely,

µM+K X L/p

nn 

→∞µ,

whereµdepends onlyz)zC.

For M =K = L= I, the identity matrix, this statement gives the famous circular law theorem, that was established through a long sequence of partial results[19,8,10,16,6,9,1,11,2,20,

12,23,24]. In this note, the steps of proof are elementary and they borrow all difficult technical statements from previously known results. Nevertheless, this theorem generalizes Theorem 1.18 in[24]in two directions. First, we have removed the assumption of uniformly bounded second moment forνM+K X L/pn,νK−1M L−1 andνK−1L−1. Secondly, it proves the convergence of the spectral measure. The explicit form ofµin terms ofνz is quite complicated. It is given by the forthcoming equations (2-3). This expression is not very easy to handle. However, following ideas developed in

[21]or using tools from free probability as in[22,14], it should be possible to find more elegant formulas. For nice examples of limit spectral distributions, see e.g.[21]. It is interesting to notice that we may deal with non-centered variables(Xi j)by including the average matrix ofX/pninto

M, and recover[4]. Finally, as in [13], it is also possible by induction to apply Theorem 4 to product of independent copies ofX (with the use of the forthcoming Theorem 8).

2

Proof of Theorem 2

2.1

Replacement Principle

The following is an extension of Theorem 2.1 in[24]. The idea goes back essentially to Girko.

Lemma 5(Replacement principle). Let An,Bnbe n×n complex random matrices. Suppose that for a.a. z∈C, a.s.

(i) νAnzνBnz tends weakly to0,

(ii) ln(·)is uniformly integrable forAnz)n1andBnz)n1.

Then a.s.µAnµBntends weakly to0. Moreover the same holds if we replace (i) by (i’) Rln(x)dνAnz

R

ln(x)dνBnz tends to0.

Proof. It is a straightforward adaptation of[3, Lemma A.2]. ƒ Corollary 6. Let An,Bn,Mnbe n×n complex random matrices. Suppose that a.s. Mnis invertible and for a.a. z∈C, a.s.

(i) νA

nz Mn−1−νBnz M−1n tends weakly to0, (ii) ln(·)is uniformly integrable forAnz M−1


(4)

Then a.s.µM

nAnµMnBntends weakly to0. Proof. IfMnis invertible, note that

Z

ln(x)dνMnAnz=

1

nln|det(MnAnz)|=

Z

ln(x)dνAnz Mn−1+

1

nln|detMn|.

We may thus apply Lemma 5(i’)-(ii). Indeed, in the expressionRln(x)dνA nz

R

ln(x)dνB nz, the

term 1

nln|detMn|cancels. ƒ

2.2

Convergence of singular values

The following result is due to Dozier and Silverstein.

Theorem 7 (Convergence of singular values, [5]). Let(Mn)n≥1 be a sequence of n×n complex matrices such thatνMn converges weakly to a probability measureν. Then a.s. νXn/pn+Mn converges weakly to a probability measureρwhich depends only onν.

The measureρhas an explicit characterization in terms ofν. Its exact form is not relevant here.

2.3

Uniform integrability

In order to use the replacement principle, it is necessary to prove the uniform integrability of ln(·)

for some empirical singular values measures. This is achieved by proving that, for someβ >0,

x7→xβ+ is uniformly bounded.

Theorem 8 (Uniform integrability). Let (Mn)n1 be a sequence of n×n complex matrices, and assume that x7→xαis uniformly bounded forM

n)n≥1for someα >0. Then there existsβ >0such that a.s. x7→xβ+ is uniformly bounded forXn/pn+Mn)n≥1.

In the remainder of the paper, the notation n ≫ 1 means large enough n. We start with an elementary lemma.

Lemma 9(Large singular values). Almost surely, for n≫1,

Z

x2X/pn2.

Proof. We have 1

n

Pn i=1s2i(X/

p

n) = 1

n2trXX =

1 n2

P

1≤i,jn|Xi j|2, and the latter converges a.s. to

1 by the law of large number. ƒ

Corollary 10. Let0< α2and let(Mn)n≥1be a sequence of n×n complex matrices such that x7→ xαis uniformly bounded forMn)n≥1. Then, a.s. x7→x

αis uniformly bounded for

Xn/pn+Mn)n≥1. Proof. IfM,N aren×ncomplex matrices, from[15, Theorem 3.3.16], for all 1i,jnwith 1≤i+jn+1,

si+j−1(M+N)si(M) +sj(N).

Hence,


(5)

We deduce that for any non-decreasing function, f :R+R+andt>0, Z

f(x)dνM+N2 Z

f(2x)dνM+2 Z

f(2x)dνN, where we have used the inequality

f(x+y) f(2x) +f(2y).

Now, in view of Lemma 9, we may apply the above inequality to f(x) = and deduce the

statement. ƒ

The above corollary settles the problem of the uniform integrability of ln(·)at+ forνX/pn+M. The uniform integrability at 0+is a much more delicate matter. The next theorem is a deep result of Tao and Vu.

Theorem 11(Small singular values,[23,24]). Let(Mn)n1be a sequence of n×n complex invertible matrices such that x7→xαis uniformly bounded forM

n)n≥1for someα >0. There exist c1,c0>0 such that a.s. for n≫1,

sn(Xn/

p

n+Mn)≥nc1. Moreover for in1−γwithγ=0.01, a.s. for n

≫1,

sni(Xn/pn+Mn)c0i n.

Proof. The first statement is Theorem 2.1 in[23]and the second is contained in [24](see the proof of Theorem 1.20 and observe that the statement of Proposition 5.1 remains unchanged if

we consider a row of the matrixXn+pnMn). ƒ

Proof of Theorem 8.

By Corollary 10, it is sufficient to prove that x 7→ xβ is uniformly bounded for(νX/p

n+M)and

someβ >0. We have

lim sup n 1 n n X

i=1

siβ(X/pn+M)<, By Theorem 11, we may a.s. write forn1,

1

n n

X

i=1

siβ(X/pn+M) 1 n

n1−γ X

i=1

nβc1+1

n n

X

i=⌊n1−γ+1

c2

n

i

‹β

nβc1−γ+1 n

n

X

i=1 c2

n

i

‹β

.

This last expression is uniformly bounded if 0< β <min(γ/c1, 1). ƒ

2.4

End of proof of Theorem 2

Ifρis a probability measure onC\{0}, we define ˇρas the pull-back measure ofρunderφ:z7→

1/z, for any BorelEinC\{0}, ˇρ(E) =ρ(φ−1(E)). Obviously, if

n)n≥1is a sequence of probability


(6)

Note that by Theorem 8, a.s. forn≫1,Xnis invertible and x7→ xβ+ is uniformly bounded

for(νX

n/pn)n≥1. Also, from the quarter circular law theorem,νXn/pnconverges a.s. to a probability

distribution with density

1

π

p 4x21

[0,2](x),

(see Marchenko-Pastur theorem[18,25,26]). From the independence of(Xi j),(Yi j),(Gi j),(Hi j),

we may apply Corollary 6, Theorem 7 and Theorem 8 conditioned on(Xi j)toMn=zXn/pn. We

get a.s.

µX−1YµX−1H  

n→∞0.

By Theorem 11, a.s. forn1,X−1HandG−1H are invertible, it follows that

µX−1HµG−1H  

n→∞0 is equivalent to µˇX−1HµˇG−1Hn →∞0. However sinceµM N=µN M and ˇµM =µM−1, we get

µX−1HµG−1H  

n→∞0 is equivalent to µH−1XµH−1Gn →∞0. The right hand side holds by applying again, Corollary 6, Theorem 7 and Theorem 8.

3

Proof of Theorem 4

3.1

Bounds on singular values

Lemma 12 (Singular values of sum and product). If M,N are n×n complex matrices, for any α >0,

Z

xαdνM+N ≤ 21+α

‚Z

xαdνM+

Z

xαdνN

Œ , Z

xαdνM N 2 ‚Z

x2αdνM

Œ1/2‚Z

x2αdνN

Œ1/2

.

Proof. The first statement was already treated in the proof of Corollary 10. Also, from [15, Theorem 3.3.16], for all 1i,jnwith 1i+jn+1,

si+j−1(M N)≤si(M)sj(N).

Hence,

s2i(M N)≤s2i−1(M N)≤si(M)si(N).

We deduce

Z

xαdνM N2 n

n

X

i=1

i(M)sαi(N).


(7)

3.2

Logarithmic potential and Girko’s hermitization method

We denote byD′(C)the set of Schwartz distributions endowed with its usual convergence with

respect to all infinitely differentiable functions with bounded support. Let P(C)be the set of

probability measures onCwhich integrate ln|·|in a neighborhood of infinity. For everyµ∈ P(C),

thelogarithmic potential UµofµonCis the function:C→[−∞,+∞)defined for everyz∈C

by

(z) =

Z

C

ln|zz|µ(dz′),

(in classical potential theory, the definition is opposite in sign). Since ln|·| is Lebesgue locally integrable onC, one can check by using the Fubini theorem thatUµis Lebesgue locally integrable

onC. In particular,Uµ<a.e. (Lebesgue almost everywhere) and ∈ D′(C). Since ln|·|is

the fundamental solution of the Laplace equation inC, we have, inD′(C),

∆Uµ=πµ, (1)

where∆is the Laplace differential operator onCis given by∆ =1 4(∂

2 x +

2 y).

We now state an alternative statement of Lemma 5 which is closer to Girko’s original method, for a proof see[3, Lemma A.2].

Lemma 13 (Girko’s hermitization method). Let Anbe a n×n complex random matrix. Suppose that for a.a. z∈C, a.s.

(i) νAnz tends weakly to a probability measureνz onR

+,

(ii) ln(·)is uniformly integrable forA nz)n≥1.

Then there exists a probability measureµ∈ P(C)such that a.s. (j) µAn converges weakly toµ

(jj) for a.a. z∈C,

(z) =

Z

ln(x)dνz. Moreover the same holds if we replace (i) by

(i’) Rln(x)dνAnztends toRln(x)z.

Corollary 14. Let An,Kn,Mnbe n×n complex random matrices. Suppose that a.s. Knis invertible andln(·)is uniformly bounded forKn)n≥1, and for a.a. z∈C, a.s.

(i) νAn+K−1

n (Mnz)tends weakly to a probability measureνz, (ii) ln(·)is uniformly integrable forAn+Kn−1(Mnz))n≥1. Then there exists a probability measureµ∈ P(C)such that a.s.

(j) µMn+KnAnconverges weakly toµ, (jj) inD′(C),

µ= 1 π

Z


(8)

Proof. IfKnis invertible, we write

Z

ln(x)dνMn+KnAnz = 1

nln|det(An+K

−1

n (Mnz))|+

1

nln|detKn| =

Z

ln(x)dνAn+K−1

n (Mnz)+

1

nln|detKn|.

By assumption, 1

nln|detKn|=

R

ln(x)dνK

nis a.s. bounded. We may thus consider any converging

subsequence and apply Lemma 5(i’)-(ii) together with (1). ƒ

3.3

End of proof of Theorem 4

We first notice that

µM+K X L/pn=µL M L−1+LK X/pn.

It is thus sufficient to prove that the right hand side converges. We setMe =L M L−1andKe=LK. SinceKe−1(Me −z) =K−1M L−1−K−1L−1z, we may apply Lemma 12 and deduce that x 7→ xα/4

is uniformly bounded for (νKne(Mnez))n1. It only remains to invoke Theorem 8 and Theorem 7 applied toKe−1(Mez), and use Corollary 14 forMe+K Xe /pn.

3.4

Explicit expression of the limit spectral measure

LetC+={z∈C:(z)>0}, for a probability measureρonR, itsCauchy-Stieltjes transformis

defined as, for allz∈C+,

(z) =

Z 1

xzdρ(x).

By Corollary 14 and Theorem 7, inD(C), µ= 1

2π

Z

ln(x)dρz(x), (2)

where for z C, ρ

z is a probability distribution on R+. From[5], for a.a. z ∈ C, ρz has a

Cauchy-Stieltjes transform that satisfies the integral equation: for allwC+, mρz(w) =

Z 2x(1+m

ρz(w)) x2(1+m

ρz(w))2w

dνz(x), (3)

whereνz is as in Theorem 4.

Acknowledgment

The author is indebted to Tim Rogers for pointing reference[21] which has initiated this work, and thanks Djalil Chafaï and Manjunath Krishnapur for sharing their enthusiasm on non-hermitian random matrices.


(9)

References

[1] Z. D. Bai,Circular law, Ann. Probab.25(1997), no. 1, 494–529.MR1428519

[2] Z. D. Bai and J. W. Silverstein,Spectral Analysis of Large Dimensional Random Matrices, Math-ematics Monograph Series 2, Science Press, Beijing, 2006.

[3] Ch. Bordenave, P. Caputo, and D. Chafaï,Circular Law Theorem for Random Markov Matrices, preprint

❛r❳✐✈✿✵✽✵✽✳✶✺✵✷✈✷

, 2010.MR2644041

[4] D. Chafaï,Circular law for noncentral random matrices, J. Theoret. Probab.23(2010), no. 4, 945–950.

[5] B. Dozier and J. Silverstein, On the empirical distribution of eigenvalues of large dimen-sional information-plus-noise-type matrices, J. Multivariate Anal.98(2007), no. 4, 678–694. MR2322123

[6] A. Edelman,The probability that a random real Gaussian matrix has k real eigenvalues, re-lated distributions, and the circular law, J. Multivariate Anal.60 (1997), no. 2, 203–232. MR1437734

[7] P. Forrester and A. Mays, Pfaffian point process for the gaussian real generalised eigenvalue problem, preprint

❛r❳✐✈✿✵✾✶✵✳✷✺✸✶

, 2009.

[8] V. L. Girko, The circular law, Teor. Veroyatnost. i Primenen. 29 (1984), no. 4, 669–679. MR0773436

[9] ,Strong circular law, Random Oper. Stochastic Equations5(1997), no. 2, 173–196. MR1454343

[10] , The circular law. Twenty years later. III, Random Oper. Stochastic Equations 13

(2005), no. 1, 53–109.MR2130247

[11] I. Y. Goldsheid and B. A. Khoruzhenko,The Thouless formula for random non-Hermitian Jacobi matrices, Israel J. Math.148(2005), 331–346, Probability in mathematics.MR2191234

[12] F. Götze and A. Tikhomirov,The Circular Law for Random Matrices, preprint to appear in the Annals of Probability

❛r❳✐✈✿♠❛t❤✴✵✼✵✾✸✾✾✺

, 2010.

[13] , On the asymptotic spectrum of products of independent random matrices, preprint

❛r❳✐✈✿♠❛t❤✴✶✵✶✷✳✷✼✶✵

, 2010.

[14] A. Guionnet, M. Krishnapur, and O. Zeitouni, The single ring theorem, preprint

❛r❳✐✈✿✵✾✵✾✳✷✷✶✹

, 2009.

[15] R. Horn and C. Johnson,Topics in matrix analysis, Cambridge University Press, Cambridge, 1991.MR1091716

[16] C.-R. Hwang,A brief survey on the spectral radius and the spectral distribution of large ran-dom matrices with i.i.d. entries, Random matrices and their applications (Brunswick, Maine, 1984), Contemp. Math., vol. 50, Amer. Math. Soc., Providence, RI, 1986, pp. 145–152. MR0841088


(10)

[17] M. Krishnapur,From random matrices to random analytic functions, Ann. Probab.37(2009), no. 1, 314–346.MR2489167

[18] V.A. Marchenko and L.A. Pastur,The distribution of eigenvalues in sertain sets of random ma-trices, Mat. Sb.72(1967), 507–536.MR0208649

[19] M. L. Mehta,Random matrices and the statistical theory of energy levels, Academic Press, New York, 1967.MR0220494

[20] G.M. Pan and W. Zhou,Circular law, extreme singular values and potential theory, J. Multivar. Anal.101(2010), no. 3, 645–656.MR2575411

[21] T. Rogers,Universal sum and product rules for random matrices, J. Math. Phys.51(2010), no. 093304.MR2742824

[22] P. ´Sniady,Random regularization of Brown spectral measure, J. Funct. Anal.193(2002), no. 2, 291–313.MR1929504

[23] T. Tao and V. Vu,Random matrices: the circular law, Commun. Contemp. Math.10(2008), no. 2, 261–307.MR2409368

[24] ,Random matrices: Universality of ESDs and the circular law, preprint to appear in the Annals of Probability

❛r❳✐✈✿✵✽✵✼✳✹✽✾✽ ❬♠❛t❤✳P❘❪

, 2010.

[25] K. W. Wachter,The strong limits of random matrix spectra for sample matrices of independent elements, Ann. Probability6(1978), no. 1, 1–18.MR0467894

[26] Y. Q. Yin,Limiting spectral distribution for a class of random matrices, J. Multivariate Anal.20


(1)

We deduce that for any non-decreasing function, f :R+R+andt>0, Z

f(x)dνM+N2 Z

f(2x)dνM+2 Z

f(2x)dνN, where we have used the inequality

f(x+y) f(2x) +f(2y).

Now, in view of Lemma 9, we may apply the above inequality to f(x) = and deduce the

statement. ƒ

The above corollary settles the problem of the uniform integrability of ln(·)at+ forνX/pn+M.

The uniform integrability at 0+is a much more delicate matter. The next theorem is a deep result of Tao and Vu.

Theorem 11(Small singular values,[23,24]). Let(Mn)n1be a sequence of n×n complex invertible matrices such that x7→xαis uniformly bounded forM

n)n≥1for someα >0. There exist c1,c0>0

such that a.s. for n≫1,

sn(Xn/ p

n+Mn)≥nc1. Moreover for in1−γwithγ=0.01, a.s. for n

≫1,

sni(Xn/pn+Mn)c0i n.

Proof. The first statement is Theorem 2.1 in[23]and the second is contained in [24](see the proof of Theorem 1.20 and observe that the statement of Proposition 5.1 remains unchanged if

we consider a row of the matrixXn+pnMn). ƒ

Proof of Theorem 8.

By Corollary 10, it is sufficient to prove that x 7→ xβ is uniformly bounded for(νX/p

n+M)and someβ >0. We have

lim sup n 1 n n X

i=1

siβ(X/pn+M)<, By Theorem 11, we may a.s. write forn1,

1 n

n X i=1

siβ(X/pn+M) 1 n

n1−γ

X i=1

nβc1+1 n

n X i=⌊n1−γ+1

c2

n i

‹β

nβc1−γ+1 n

n X

i=1

c2 n

i ‹β

.

This last expression is uniformly bounded if 0< β <min(γ/c1, 1). ƒ

2.4

End of proof of Theorem 2

Ifρis a probability measure onC\{0}, we define ˇρas the pull-back measure ofρunderφ:z7→

1/z, for any BorelEinC\{0}, ˇρ(E) =ρ(φ−1(E)). Obviously, if

n)n≥1is a sequence of probability


(2)

Note that by Theorem 8, a.s. forn≫1,Xnis invertible and x7→ xβ+ is uniformly bounded for(νX

n/pn)n≥1. Also, from the quarter circular law theorem,νXn/pnconverges a.s. to a probability

distribution with density

1 π

p 4x21

[0,2](x),

(see Marchenko-Pastur theorem[18,25,26]). From the independence of(Xi j),(Yi j),(Gi j),(Hi j), we may apply Corollary 6, Theorem 7 and Theorem 8 conditioned on(Xi j)toMn=zXn/pn. We get a.s.

µX−1YµX−1H   n→∞0.

By Theorem 11, a.s. forn1,X−1HandG−1H are invertible, it follows that µX−1HµG−1H  

n→∞0 is equivalent to µˇX−1HµˇG−1Hn →∞0.

However sinceµM N=µN M and ˇµM =µM−1, we get µX−1HµG−1H  

n→∞0 is equivalent to µH−1XµH−1Gn →∞0.

The right hand side holds by applying again, Corollary 6, Theorem 7 and Theorem 8.

3

Proof of Theorem 4

3.1

Bounds on singular values

Lemma 12 (Singular values of sum and product). If M,N are n×n complex matrices, for any α >0,

Z

xαdνM+N ≤ 21+α ‚Z

xαdνM+ Z

xαdνN Œ

, Z

xαdνM N 2 ‚Z

x2αdνM

Œ1/2‚Z

x2αdνN Œ1/2

.

Proof. The first statement was already treated in the proof of Corollary 10. Also, from [15, Theorem 3.3.16], for all 1i,jnwith 1i+jn+1,

si+j−1(M N)≤si(M)sj(N). Hence,

s2i(M N)≤s2i−1(M N)≤si(M)si(N). We deduce

Z

xαdνM N2 n

n X

i=1

i(M)sαi(N).


(3)

3.2

Logarithmic potential and Girko’s hermitization method

We denote byD′(C)the set of Schwartz distributions endowed with its usual convergence with respect to all infinitely differentiable functions with bounded support. Let P(C)be the set of probability measures onCwhich integrate ln|·|in a neighborhood of infinity. For everyµ∈ P(C), thelogarithmic potential UµofµonCis the function:C→[−∞,+∞)defined for everyz∈C by

(z) = Z

C

ln|zz|µ(dz′),

(in classical potential theory, the definition is opposite in sign). Since ln|·| is Lebesgue locally integrable onC, one can check by using the Fubini theorem thatUµis Lebesgue locally integrable onC. In particular,Uµ<a.e. (Lebesgue almost everywhere) and ∈ D′(C). Since ln|·|is the fundamental solution of the Laplace equation inC, we have, inD′(C),

∆Uµ=πµ, (1)

where∆is the Laplace differential operator onCis given by∆ =1

4(∂ 2

x +

2

y).

We now state an alternative statement of Lemma 5 which is closer to Girko’s original method, for a proof see[3, Lemma A.2].

Lemma 13 (Girko’s hermitization method). Let Anbe a n×n complex random matrix. Suppose that for a.a. z∈C, a.s.

(i) νAn−z tends weakly to a probability measureνz onR

+,

(ii) ln(·)is uniformly integrable forAn−z)n1.

Then there exists a probability measureµ∈ P(C)such that a.s. (j) µAn converges weakly toµ

(jj) for a.a. z∈C,

(z) = Z

ln(x)dνz. Moreover the same holds if we replace (i) by

(i’) Rln(x)dνAn−ztends toRln(x)z.

Corollary 14. Let An,Kn,Mnbe n×n complex random matrices. Suppose that a.s. Knis invertible andln(·)is uniformly bounded forKn)n≥1, and for a.a. z∈C, a.s.

(i) νAn+K−1

n (Mn−z)tends weakly to a probability measureνz,

(ii) ln(·)is uniformly integrable forAn+Kn−1(Mn−z))n≥1.

Then there exists a probability measureµ∈ P(C)such that a.s. (j) µMn+KnAnconverges weakly toµ,

(jj) inD′(C),

µ= 1 π

Z


(4)

Proof. IfKnis invertible, we write Z

ln(x)dνMn+KnAn−z = 1

nln|det(An+K

−1

n (Mnz))|+ 1

nln|detKn| =

Z

ln(x)dνAn+K−1

n (Mn−z)+

1

nln|detKn|. By assumption, 1

nln|detKn|= R

ln(x)dνK

nis a.s. bounded. We may thus consider any converging

subsequence and apply Lemma 5(i’)-(ii) together with (1). ƒ

3.3

End of proof of Theorem 4

We first notice that

µM+K X L/pn=µL M L−1+LK X/pn.

It is thus sufficient to prove that the right hand side converges. We setMe =L M L−1andKe=LK. SinceKe−1(Me −z) =K−1M L−1−K−1L−1z, we may apply Lemma 12 and deduce that x 7→ xα/4 is uniformly bounded for (νKen(Men−z))n1. It only remains to invoke Theorem 8 and Theorem 7 applied toKe−1(Mez), and use Corollary 14 forMe+K Xe /pn.

3.4

Explicit expression of the limit spectral measure

LetC+={z∈C:(z)>0}, for a probability measureρonR, itsCauchy-Stieltjes transformis defined as, for allz∈C+,

(z) = Z

1

xzdρ(x). By Corollary 14 and Theorem 7, inD(C),

µ= 1 2π∆

Z

ln(x)dρz(x), (2)

where for z C, ρ

z is a probability distribution on R+. From[5], for a.a. z ∈ C, ρz has a Cauchy-Stieltjes transform that satisfies the integral equation: for allwC+,

mρz(w) =

Z 2x(1+m ρz(w))

x2(1+m

ρz(w))

2wdνz(x), (3)

whereνz is as in Theorem 4.

Acknowledgment

The author is indebted to Tim Rogers for pointing reference[21] which has initiated this work, and thanks Djalil Chafaï and Manjunath Krishnapur for sharing their enthusiasm on non-hermitian random matrices.


(5)

References

[1] Z. D. Bai,Circular law, Ann. Probab.25(1997), no. 1, 494–529.MR1428519

[2] Z. D. Bai and J. W. Silverstein,Spectral Analysis of Large Dimensional Random Matrices, Math-ematics Monograph Series 2, Science Press, Beijing, 2006.

[3] Ch. Bordenave, P. Caputo, and D. Chafaï,Circular Law Theorem for Random Markov Matrices, preprint

❛r❳✐✈✿✵✽✵✽✳✶✺✵✷✈✷

, 2010.MR2644041

[4] D. Chafaï,Circular law for noncentral random matrices, J. Theoret. Probab.23(2010), no. 4, 945–950.

[5] B. Dozier and J. Silverstein, On the empirical distribution of eigenvalues of large dimen-sional information-plus-noise-type matrices, J. Multivariate Anal.98(2007), no. 4, 678–694.

MR2322123

[6] A. Edelman,The probability that a random real Gaussian matrix has k real eigenvalues, re-lated distributions, and the circular law, J. Multivariate Anal.60 (1997), no. 2, 203–232.

MR1437734

[7] P. Forrester and A. Mays, Pfaffian point process for the gaussian real generalised eigenvalue problem, preprint

❛r❳✐✈✿✵✾✶✵✳✷✺✸✶

, 2009.

[8] V. L. Girko, The circular law, Teor. Veroyatnost. i Primenen. 29 (1984), no. 4, 669–679.

MR0773436

[9] ,Strong circular law, Random Oper. Stochastic Equations5(1997), no. 2, 173–196.

MR1454343

[10] , The circular law. Twenty years later. III, Random Oper. Stochastic Equations 13

(2005), no. 1, 53–109.MR2130247

[11] I. Y. Goldsheid and B. A. Khoruzhenko,The Thouless formula for random non-Hermitian Jacobi matrices, Israel J. Math.148(2005), 331–346, Probability in mathematics.MR2191234

[12] F. Götze and A. Tikhomirov,The Circular Law for Random Matrices, preprint to appear in the Annals of Probability

❛r❳✐✈✿♠❛t❤✴✵✼✵✾✸✾✾✺

, 2010.

[13] , On the asymptotic spectrum of products of independent random matrices, preprint

❛r❳✐✈✿♠❛t❤✴✶✵✶✷✳✷✼✶✵

, 2010.

[14] A. Guionnet, M. Krishnapur, and O. Zeitouni, The single ring theorem, preprint

❛r❳✐✈✿✵✾✵✾✳✷✷✶✹

, 2009.

[15] R. Horn and C. Johnson,Topics in matrix analysis, Cambridge University Press, Cambridge, 1991.MR1091716

[16] C.-R. Hwang,A brief survey on the spectral radius and the spectral distribution of large ran-dom matrices with i.i.d. entries, Ranran-dom matrices and their applications (Brunswick, Maine, 1984), Contemp. Math., vol. 50, Amer. Math. Soc., Providence, RI, 1986, pp. 145–152.


(6)

[17] M. Krishnapur,From random matrices to random analytic functions, Ann. Probab.37(2009), no. 1, 314–346.MR2489167

[18] V.A. Marchenko and L.A. Pastur,The distribution of eigenvalues in sertain sets of random ma-trices, Mat. Sb.72(1967), 507–536.MR0208649

[19] M. L. Mehta,Random matrices and the statistical theory of energy levels, Academic Press, New York, 1967.MR0220494

[20] G.M. Pan and W. Zhou,Circular law, extreme singular values and potential theory, J. Multivar. Anal.101(2010), no. 3, 645–656.MR2575411

[21] T. Rogers,Universal sum and product rules for random matrices, J. Math. Phys.51(2010), no. 093304.MR2742824

[22] P. ´Sniady,Random regularization of Brown spectral measure, J. Funct. Anal.193(2002), no. 2, 291–313.MR1929504

[23] T. Tao and V. Vu,Random matrices: the circular law, Commun. Contemp. Math.10(2008), no. 2, 261–307.MR2409368

[24] ,Random matrices: Universality of ESDs and the circular law, preprint to appear in the Annals of Probability

❛r❳✐✈✿✵✽✵✼✳✹✽✾✽ ❬♠❛t❤✳P❘❪

, 2010.

[25] K. W. Wachter,The strong limits of random matrix spectra for sample matrices of independent elements, Ann. Probability6(1978), no. 1, 1–18.MR0467894

[26] Y. Q. Yin,Limiting spectral distribution for a class of random matrices, J. Multivariate Anal.20


Dokumen yang terkait

AN ALIS IS YU RID IS PUT USAN BE B AS DAL AM P E RKAR A TIND AK P IDA NA P E NY E RTA AN M E L AK U K A N P R AK T IK K E DO K T E RA N YA NG M E N G A K IB ATK AN M ATINYA P AS IE N ( PUT USA N N O MOR: 9 0/PID.B /2011/ PN.MD O)

0 82 16

ANALISIS FAKTOR YANGMEMPENGARUHI FERTILITAS PASANGAN USIA SUBUR DI DESA SEMBORO KECAMATAN SEMBORO KABUPATEN JEMBER TAHUN 2011

2 53 20

EFEKTIVITAS PENDIDIKAN KESEHATAN TENTANG PERTOLONGAN PERTAMA PADA KECELAKAAN (P3K) TERHADAP SIKAP MASYARAKAT DALAM PENANGANAN KORBAN KECELAKAAN LALU LINTAS (Studi Di Wilayah RT 05 RW 04 Kelurahan Sukun Kota Malang)

45 393 31

FAKTOR – FAKTOR YANG MEMPENGARUHI PENYERAPAN TENAGA KERJA INDUSTRI PENGOLAHAN BESAR DAN MENENGAH PADA TINGKAT KABUPATEN / KOTA DI JAWA TIMUR TAHUN 2006 - 2011

1 35 26

A DISCOURSE ANALYSIS ON “SPA: REGAIN BALANCE OF YOUR INNER AND OUTER BEAUTY” IN THE JAKARTA POST ON 4 MARCH 2011

9 161 13

Pengaruh kualitas aktiva produktif dan non performing financing terhadap return on asset perbankan syariah (Studi Pada 3 Bank Umum Syariah Tahun 2011 – 2014)

6 101 0

Pengaruh pemahaman fiqh muamalat mahasiswa terhadap keputusan membeli produk fashion palsu (study pada mahasiswa angkatan 2011 & 2012 prodi muamalat fakultas syariah dan hukum UIN Syarif Hidayatullah Jakarta)

0 22 0

Pendidikan Agama Islam Untuk Kelas 3 SD Kelas 3 Suyanto Suyoto 2011

4 108 178

ANALISIS NOTA KESEPAHAMAN ANTARA BANK INDONESIA, POLRI, DAN KEJAKSAAN REPUBLIK INDONESIA TAHUN 2011 SEBAGAI MEKANISME PERCEPATAN PENANGANAN TINDAK PIDANA PERBANKAN KHUSUSNYA BANK INDONESIA SEBAGAI PIHAK PELAPOR

1 17 40

KOORDINASI OTORITAS JASA KEUANGAN (OJK) DENGAN LEMBAGA PENJAMIN SIMPANAN (LPS) DAN BANK INDONESIA (BI) DALAM UPAYA PENANGANAN BANK BERMASALAH BERDASARKAN UNDANG-UNDANG RI NOMOR 21 TAHUN 2011 TENTANG OTORITAS JASA KEUANGAN

3 32 52