Control on the Green’s function

where b n ε → 0 as n → ∞. By the Markov property again and arguments similar to above 1 p n n c1 X k= n1 −ε c1 +1 P n i, j Y k = 0 ≤ 1 p n n ε c1 X k=0 P 0,0 Y k = 0 ≤ O p ε + c n ε where c n ε → 0 as n → ∞. So what we finally have is 1 p n n −1 X k=0 P n i, j Y k = 0, L k ≤ n − 1 = 1 p n [ n c1 ] X k=0 P n i, j Y k = 0 + O p ε + d n ε 12 where d n ε → 0 as n → ∞.

3.2 Control on the Green’s function

We follow the approach used in [1] to find the limit as n → ∞ of 1 p n [ n c1 ] X k=0 P n i, j Y k = 0 in the right hand side of 12. Since ε 0 is arbitrary, this in turn will give us the limit of the left hand side of 12. In the averaged sense Y k is a random walk on Z perturbed at 0 with transition kernel q given by q0, y = P 0,0,0,0 X λ L1 · e 1 − ˜ X ˜ λ L1 · e 1 = y qx, y = P 0,0,1,0 X λ L1 · e 1 − ˜ X ˜ λ L1 · e 1 = y − x − 1 for x 6= 0. Denote the transition kernel of the corresponding unperturbed walk by q. qx, y = P 0,0 × P 0,0 X λ L1 · e 1 − ˜ X ˜ λ L1 · e 1 = y − x. where P 0,0 × P 0,0 is the measure under which the walks are independent in independent environ- ments. Note that qx, y = qx, y for x 6= 0. The q walk is easily seen to be aperiodicfrom assumption 1.1 iii, irreducible and symmetric and these properties can be transferred to the q walk. The q can be shown to have finite first moment because L 1 has exponential moments with mean 0. Green functions for the q and q walks are given by G n x, y = n X k=0 q k x, y and G n x, y = n X k=0 q k x, y. 1279 The potential kernel a of the q walk is ax = lim n →∞ {G n 0, 0 − G n x, 0}. It is a well known result from Spitzer [8]sections 28 and 29 that lim x →±∞ ax |x| = 1 σ 2 where σ 2 = variance of the q walk. 13 Furthermore we can show that see [1] page 518 1 p n G n −1 0, 0β = 1 p n E 0,0 [aY n ] where β = X x ∈Z q0, xax. 14 First we will show 1 p n E 0,0 |Y n | converges to conclude that 1 p n E 0,0 [aY n ] converges. Notice that Y k = X λ Lk · e 1 − ˜ X ˜ λ Lk · e 1 is a martingale w.r.t. {G k = σX 1 , X 2 , . . . , X λ Lk , ˜ X 1 , ˜ X 2 , . . . , ˜ X ˜ λ Lk } under the measure P 0,0 . We will use the martingale central limit theorem [4] page 414 to show that Y n p n converges to a centered Gaussian. We first show 1 n n X k=1 E 0,0 Y k − Y k −1 2 I {|Y k −Y k −1 |ε p n } G k −1 → 0 in probability. 15 We already have from Lemma 3.5 that for some a E 0,0 e a 4K |Y 1 | ≤ E 0,0 e a L 1 ∞, E 0,0,1,0 e a 4K |Y 1 | ≤ E 0,0,1,0 e a L 1 ∞. Thus E 0,0 |Y k − Y k −1 | 3 G k −1 ≤ C and so 15 holds. Now we check 1 n n X k=1 E 0,0 Y k − Y k −1 2 |G k −1 → σ 2 in probability. Note that E 0,0 Y k − Y k −1 2 G k −1 = E 0,0 Y k − Y k −1 2 I {Y k −1 =0} |G k −1 + E 0,0 Y k − Y k −1 2 I {Y k −1 6=0} |G k −1 = u I {Y k −1 =0} + σ 2 I {Y k −1 6=0} where u = E 0,0 Y 2 1 and E 1,0,0,0 Y 1 − 1 2 = σ 2 as defined in 13, the variance of the unper- turbed walk q. So 1 n n X k=1 E 0,0 Y k − Y k −1 2 |G k −1 = σ 2 + u − σ 2 n n X k=1 I {Y k −1 =0} . To complete, by choosing b large enough we get E 0,0 [ n X k=1 I {Y k −1 =0} ] ≤ nP 0,0 L n bn + E 0,0 |X [0,nb] ∩ ˜ X [0,nb] | ≤ C p n. 1280 Hence 1 n P n k=1 I {Y k −1 =0} → 0 in P 0,0 -probability. We have checked both the conditions of the mar- tingale central limit theorem and so we have n − 1 2 Y n ⇒ N0, σ 2 . We now show E 0,0 |n − 1 2 Y n | → E |N0, σ 2 | = 2 σ p 2 π . This will follow if we can show that n − 1 2 Y n uniformly integrable. But that is clear since we have E 0,0 Y 2 n n = σ 2 + u − σ 2 n n X k=1 P 0,0 Y k −1 = 0 ≤ u + σ 2 . It is easily shown that lim n →∞ E 0,0 [aY n ] p n = lim n →∞ 1 σ 2 E 0,0 |Y n | p n = 2 σ p 2 π . We already know by the local limit theorem [4] section 2.6 that lim n →∞ 1 p n G n 0, 0 = 2 σ p 2 π which is equal to lim n →∞ n − 1 2 E 0,0 [aY n ] = lim n →∞ n − 1 2 β G n 0, 0 by the above computations. The arguments in [1] page 518 4.9 allow us to conclude that sup x 1 p n |β G n x, 0 − G n x, 0| → 0. Now returning back to 12, the local limit theorem [4] section 2.6 and a Riemann sum argument gives us lim n →∞ 1 p n G [ n c1 ] [r i p n] − [r j p n], 0 = lim n →∞ 1 p n [ n c1 ] X k=1 n 1 p 2 πσ 2 p k exp − nr i − r j 2 2 σ 2 k + o 1 p k o = 1 σ 2 Z σ2 c1 1 p 2 πv exp − r i − r j 2 2v d v. Hence the right hand side of 12 tends to lim n →∞ 1 p n G [ n c1 ] [r i p n] − [r j p n], 0 = 1 βσ 2 Z σ2 c1 1 p 2 πv exp − r i − r j 2 2v d v. 16 This completes the proof of Proposition 3.2 . 3.3 Proof of Proposition 3.3

Dokumen yang terkait

AN ALIS IS YU RID IS PUT USAN BE B AS DAL AM P E RKAR A TIND AK P IDA NA P E NY E RTA AN M E L AK U K A N P R AK T IK K E DO K T E RA N YA NG M E N G A K IB ATK AN M ATINYA P AS IE N ( PUT USA N N O MOR: 9 0/PID.B /2011/ PN.MD O)

0 82 16

ANALISIS FAKTOR YANGMEMPENGARUHI FERTILITAS PASANGAN USIA SUBUR DI DESA SEMBORO KECAMATAN SEMBORO KABUPATEN JEMBER TAHUN 2011

2 53 20

EFEKTIVITAS PENDIDIKAN KESEHATAN TENTANG PERTOLONGAN PERTAMA PADA KECELAKAAN (P3K) TERHADAP SIKAP MASYARAKAT DALAM PENANGANAN KORBAN KECELAKAAN LALU LINTAS (Studi Di Wilayah RT 05 RW 04 Kelurahan Sukun Kota Malang)

45 393 31

FAKTOR – FAKTOR YANG MEMPENGARUHI PENYERAPAN TENAGA KERJA INDUSTRI PENGOLAHAN BESAR DAN MENENGAH PADA TINGKAT KABUPATEN / KOTA DI JAWA TIMUR TAHUN 2006 - 2011

1 35 26

A DISCOURSE ANALYSIS ON “SPA: REGAIN BALANCE OF YOUR INNER AND OUTER BEAUTY” IN THE JAKARTA POST ON 4 MARCH 2011

9 161 13

Pengaruh kualitas aktiva produktif dan non performing financing terhadap return on asset perbankan syariah (Studi Pada 3 Bank Umum Syariah Tahun 2011 – 2014)

6 101 0

Pengaruh pemahaman fiqh muamalat mahasiswa terhadap keputusan membeli produk fashion palsu (study pada mahasiswa angkatan 2011 & 2012 prodi muamalat fakultas syariah dan hukum UIN Syarif Hidayatullah Jakarta)

0 22 0

Pendidikan Agama Islam Untuk Kelas 3 SD Kelas 3 Suyanto Suyoto 2011

4 108 178

ANALISIS NOTA KESEPAHAMAN ANTARA BANK INDONESIA, POLRI, DAN KEJAKSAAN REPUBLIK INDONESIA TAHUN 2011 SEBAGAI MEKANISME PERCEPATAN PENANGANAN TINDAK PIDANA PERBANKAN KHUSUSNYA BANK INDONESIA SEBAGAI PIHAK PELAPOR

1 17 40

KOORDINASI OTORITAS JASA KEUANGAN (OJK) DENGAN LEMBAGA PENJAMIN SIMPANAN (LPS) DAN BANK INDONESIA (BI) DALAM UPAYA PENANGANAN BANK BERMASALAH BERDASARKAN UNDANG-UNDANG RI NOMOR 21 TAHUN 2011 TENTANG OTORITAS JASA KEUANGAN

3 32 52