Proof of Proposition 3.2 getdoc354e. 222KB Jun 04 2011 12:04:15 AM

and ξ n s, r i = M n,i [ns] · e 1 + ED · e 1 ζ n s, r i = M n,i [ns] · e 1 − E D · e 1 E D · e 2 M n,i [ns] · e 2 + O1. So recall the definiton of ˆ w in 1, N X i=1 θ i ξ n ·, r i n 1 4 = n − 1 4 N X i=1 θ i h E ω r i p n X λ [n·] · e 1 − E r i p n X λ [n·] · e 1 i = ˆ w · N X i=1 θ i M n,i [n·] n 1 4 + On − 1 4 ⇒ ˆ w · B h· . Returning to equation 7, the proof of Theorem 2.1 will be complete if we show 1 p n n X k=1 P ω r i p n, r j p n X λ k −1 = ˜ X ˜ λ k −1 on level k − 1 −→ 1 βσ 2 Z σ2 c1 1 p 2 πv exp − r i − r j 2 2v d v in P-probability as n → ∞. We will first show the averaged statement with ω integrated away P ROPOSITION 3.2. 1 p n n X k=1 P r i p n, r j p n X λ k −1 = ˜ X ˜ λ k −1 on level k − 1 −→ 1 βσ 2 Z σ2 c1 1 p 2 πv exp − r i − r j 2 2v d v and then show that the difference of the two vanishes: P ROPOSITION 3.3. 1 p n n X k=1 P ω r i p n, r j p n X λ k −1 = ˜ X ˜ λ k −1 on level k − 1 − 1 p n n X k=1 P r i p n, r j p n X λ k −1 = ˜ X ˜ λ k −1 on level k − 1 −→ 0 in P-probability.

3.1 Proof of Proposition 3.2

For simplicity of notation, let P n i, j denote P r i p n,r j p n and E n i, j denote E r i p n,r j p n . Let 0 = L L 1 · · · be the successive common levels of the independent walks in common environment X and ˜ X ; that is L j = inf{l L j −1 : X λ l · e 2 = ˜ X ˜ λ l · e 2 = l}. Let Y k = X λ Lk · e 1 − ˜ X ˜ λ Lk · e 1 . Now 1 p n n X k=1 P n i, j X λ k −1 = ˜ X ˜ λ k −1 on level k − 1 1274 = 1 p n n X k=1 P n i, j X λ Lk−1 = ˜ X ˜ λ Lk−1 and L k −1 ≤ n − 1 = 1 p n n X k=1 P n i, j Y k −1 = 0 and L k −1 ≤ n − 1. 9 We would like to get rid of the inequality L k −1 ≤ n − 1 in the expression above so that we have something resembling a Green’s function. Denote by ∆L j = L j+1 − L j . Call L k a meeting level m.l. if the two walks meet at that level, that is X λ Lk = ˜ X ˜ λ Lk . Also let I = { j : L j is a meeting level }. Let Q 1 , Q 2 , · · · be the consecutive ∆L j where j ∈ I and R 1 , R 2 , · · · be the consecutive ∆L j where j ∈ I. We start with a simple observation. L EMMA 3.4. Fix x, y ∈ Z. Under P x, y , Q 1 , Q 2 , · · · are i.i.d. with common distribution P 0,00,0 L 1 ∈ · R 1 , R 2 , · · · are i.i.d. with common distribution P 0,0,1,0 L 1 ∈ · Proof. We prove the second statement. The first statement can be proved similarly. Call a level a non meeting common level n.m.c.l if the two walks hit the level but do not meet at that level. For positive integers k 1 , k 2 , · · · , k n , P x, y R 1 = k 1 , R 2 = k 2 , · · · , R n = k n = X i P x, y R 1 = k 1 , · · · , R n = k n , i is the n’th n.m.c.l. = X i, j 6=0 P x, y R 1 = k 1 , · · · , R n −1 = k n −1 , i is the n’th n.m.c.l., ˜ X ˜ λ i · e 1 − X λ i · e 1 = j, R n = k n = X i, j 6=0,l E h P ω x, y R 1 = k 1 , · · · , R n −1 = k n −1 , i is the n’th n.m.c.l., X λ i · e 1 = l, ˜ X ˜ λ i · e 1 = j + l ×P ω l,i,l+ j,i ∆L = k n i = X i, j 6=0,l E h P ω x, y R 1 = k 1 , · · · , R n −1 = k n −1 , i is the n’th n.m.c.l., X λ i · e 1 = l, ˜ X ˜ λ i · e 1 = j + l i ×P 0,0,e 1 L 1 = k n = P 0,0,e 1 L 1 = k n P x, y R 1 = k 1 , R 2 = k 2 , · · · , R n −1 = k n −1 . The fourth equality is because P ω l,i,l+ j,i ∆L = k n depends on {ω m : m ≥ i} whereas the previous term depends on the part of the environment strictly below level i. Note also that P 0,0,e 1 L 1 = k n = P 0,0, je 1 L 1 = k n . This can be seen by a path by path decomposition of the two walks. The proof is complete by induction. L EMMA 3.5. There exists some a 0 such that E 0,0,0,0 e a L 1 ∞ and E 0,0,1,0 e a L 1 ∞. 1275 Proof. By the ellipticity assumption iii, we have P 0,0,0,0 L 1 k ≤ 1 − δ [ k K ] , P 0,0,1,0 L 1 k ≤ 1 − δ [ k K ] . Since L 1 is stochastically dominated by a geometric random variable, we are done. Let us denote by X [0,n] the set of points visited by the walk upto time n. It has been proved in Proposition 5.1 of [7] that for any starting points x, y ∈ Z 2 E x, y |X [0,n] ∩ ˜ X [0,n] | ≤ C p n. 10 This inequality is obtained by control on a Green’s function. The above lemma and the inequality that follows tell us that common levels occur very frequently but the walks meet rarely. Let E 0,0,1,0 L 1 = c 1 , E 0,0,0,0 L 1 = c . 11 We will need the following lemma. L EMMA 3.6. For each ε 0, there exist constants C 0, bε 0, dε 0 such that P n i, j L n n ≥ c 1 + ε ≤ C exp − nbε, P n i, j L n n ≤ c 1 − ε ≤ C exp − ndε. Thus L n n → c 1 P 0,0 a.s. Proof. We prove the first inequality. From Lemmas 3.4 and 3.5, we can find a 0 and some ν 0 such that for each n, E n i, j expa L n ≤ ν n . We thus have P n i, j L n n ≥ C 1 ≤ E n i, j expa L n expaC 1 n ≤ exp{nlog ν − aC 1 }. Choose C 1 large enough so that log ν − aC 1 0. Now P n i, j L n n ≥ c 1 + ε ≤ exp{nlog ν − aC 1 } + P n i, j c 1 + ε ≤ L n n ≤ C 1 . Let γ = ε 4c . Denote by I n = { j : 0 ≤ j n, L j is a meeting level } and recall ∆L j = L j+1 − L j . We have P n i, j c 1 + ε ≤ L n n ≤ C 1 ≤ P n i, j |I n | ≥ γn, L n ≤ C 1 n + P n i, j |I n | γn, c 1 + ε ≤ P j ∈I n , j n ∆L j n + P j ∈I n ∆L j n ≤ C 1 . 1276 Let T 1 , T 2 , . . . be the increments of the successive meeting levels. By an argument like the one given in Lemma 3.4, {T i } i ≥1 are i.i.d. Also from 10, it follows that E 0,0 T 1 = ∞. Let M = Mγ = 6 C 1 γ and find K = K γ such that E 0,0 T 1 ∧ K ≥ M. Now, P n i, j |I n | ≥ γn, L n ≤ C 1 n ≤ P n i, j T 1 + T 2 + · · · + T [γn]−1 ≤ C 1 n ≤ P n i, j T 1 + T 2 + · · · T [γn]−1 [γn] − 1 ≤ 4 C 1 γ ≤ P n i, j T 1 ∧ K + T 2 ∧ K + · · · T [γn]−1 ∧ K [γn] − 1 ≤ 4 C 1 γ ≤ exp[−nb 2 ]. for some b 2 0. The last inequality follows from standard large deviation theory. Also P n i, j |I n | γn, c 1 + ε ≤ P j ∈I n , j n ∆L j n + P j ∈I n ∆L j n ≤ C 1 ≤ P n i, j |I n | γn, c 1 + ε 2 ≤ 1 n X j ∈I n , j n ∆L j + P n i, j |I n | γn, 1 n X j ∈I n ∆L j ≥ ε 2 . Let {M j } j ≥1 be i.i.d. with the distribution of L 1 under P 0,e 1 and {N j } j ≥1 be i.i.d. with the distribution of L 1 under P 0,0 . We thus have that the above expression is less than P 1 n n X j=1 M j ≥ c 1 + ε 2 + P 1 n [γn] X j=1 N j ≥ ε 2 ≤ exp−nb 3 ε + P 1 [γn] [γn] X j=1 N j ≥ ε 2 γ ≤ exp−nb 3 ε + exp−nb 4 ε. for some b 3 ε, b 4 ε 0. Recall that ε 2 γ c by our choice of γ. Combining all the inequalities, we have P n i, j L n n ≥ c 1 + ε ≤ 3 exp−nbε. for some b ε 0. The proof of the second inequality is similar. Returning to 9, let us separate the sum into two parts as 1 p n [ n1+ ε c1 ] X k=0 P n i, j Y k = 0 and L k ≤ n − 1 + 1 p n n −1 X k=[ n1+ ε c1 ]+1 P n i, j Y k = 0 and L k ≤ n − 1. Now the second term above is 1 p n n −1 X k=[ n1+ ε c1 ]+1 P n i, j X λ Lk = ˜ X ˜ λ Lk and L k ≤ n − 1 ≤ n p n P n i, j L [ n1+ ε c1 ] ≤ n 1277 which goes to 0 as n tends to infinity by Lemma 3.6. Similarly 1 p n h [ n1 −ε c1 ] X k=0 P n i, j Y k = 0 − [ n1 −ε c1 ] X k=0 P n i, j Y k = 0, L k ≤ n − 1 i ≤ 1 p n [ n1 −ε c1 ] X k=0 P n i, j L k ≥ n ≤ n p n P n i, j L [ n1 −ε c1 ] ≥ n also goes to 0 as n tends to infinity. Thus 1 p n n −1 X k=0 P n i, j Y k = 0, L k ≤ n − 1 = 1 p n [ n1 −ε c1 ] X k=0 P n i, j Y k = 0 + 1 p n [ n1+ ε c1 ] X k=[ n1 −ε c1 ]+1 P n i, j Y k = 0, L k ≤ n − 1 + a n ε where a n ε → 0 as n → ∞. Now we will show the second term in in the right hand side of the above equation is negligible. Let τ = min{ j ≥ [ n1 −ε c 1 ] + 1 : Y j = 0}. Using the Markov property for the second line below, we get 1 p n [ n1+ ε c1 ] X k=[ n1 −ε c1 ]+1 P n i, j Y k = 0, L k ≤ n − 1 = 1 p n E n i, j h [ n1+ ε c1 ] X k= τ I {Y k =0,L k ≤n−1} i ≤ 1 p n E 0,0 h [ 2n ε c1 ] X k=0 I {Y k =0} i = 1 p n E 0,0 h I {L [ 2nε c1 ] ≤4nε} [ 2n ε c1 ] X k=0 I {Y k =0} i + 1 p n E 0,0 h I {L [ 2nε c1 ] 4nε} [ 2n ε c1 ] X k=0 I {Y k =0} i . In the expression after the last equality, using 10 we have First term ≤ 1 p n E 0,0 X [0,4nε] \ ˜ X [0,4nε] ≤ C p n p 4n ε ≤ C p ε. Second term ≤ C n p n P 0,0 L [ 2n ε c1 ] 4nε −→ 0. by Lemma 3.6. This gives us 1 p n n −1 X k=0 P n i, j Y k = 0, L k ≤ n − 1 = 1 p n [ n1 −ε c1 ] X k=0 P n i, j Y k = 0 + O p ε + b n ε 1278 where b n ε → 0 as n → ∞. By the Markov property again and arguments similar to above 1 p n n c1 X k= n1 −ε c1 +1 P n i, j Y k = 0 ≤ 1 p n n ε c1 X k=0 P 0,0 Y k = 0 ≤ O p ε + c n ε where c n ε → 0 as n → ∞. So what we finally have is 1 p n n −1 X k=0 P n i, j Y k = 0, L k ≤ n − 1 = 1 p n [ n c1 ] X k=0 P n i, j Y k = 0 + O p ε + d n ε 12 where d n ε → 0 as n → ∞.

3.2 Control on the Green’s function

Dokumen yang terkait

AN ALIS IS YU RID IS PUT USAN BE B AS DAL AM P E RKAR A TIND AK P IDA NA P E NY E RTA AN M E L AK U K A N P R AK T IK K E DO K T E RA N YA NG M E N G A K IB ATK AN M ATINYA P AS IE N ( PUT USA N N O MOR: 9 0/PID.B /2011/ PN.MD O)

0 82 16

ANALISIS FAKTOR YANGMEMPENGARUHI FERTILITAS PASANGAN USIA SUBUR DI DESA SEMBORO KECAMATAN SEMBORO KABUPATEN JEMBER TAHUN 2011

2 53 20

EFEKTIVITAS PENDIDIKAN KESEHATAN TENTANG PERTOLONGAN PERTAMA PADA KECELAKAAN (P3K) TERHADAP SIKAP MASYARAKAT DALAM PENANGANAN KORBAN KECELAKAAN LALU LINTAS (Studi Di Wilayah RT 05 RW 04 Kelurahan Sukun Kota Malang)

45 393 31

FAKTOR – FAKTOR YANG MEMPENGARUHI PENYERAPAN TENAGA KERJA INDUSTRI PENGOLAHAN BESAR DAN MENENGAH PADA TINGKAT KABUPATEN / KOTA DI JAWA TIMUR TAHUN 2006 - 2011

1 35 26

A DISCOURSE ANALYSIS ON “SPA: REGAIN BALANCE OF YOUR INNER AND OUTER BEAUTY” IN THE JAKARTA POST ON 4 MARCH 2011

9 161 13

Pengaruh kualitas aktiva produktif dan non performing financing terhadap return on asset perbankan syariah (Studi Pada 3 Bank Umum Syariah Tahun 2011 – 2014)

6 101 0

Pengaruh pemahaman fiqh muamalat mahasiswa terhadap keputusan membeli produk fashion palsu (study pada mahasiswa angkatan 2011 & 2012 prodi muamalat fakultas syariah dan hukum UIN Syarif Hidayatullah Jakarta)

0 22 0

Pendidikan Agama Islam Untuk Kelas 3 SD Kelas 3 Suyanto Suyoto 2011

4 108 178

ANALISIS NOTA KESEPAHAMAN ANTARA BANK INDONESIA, POLRI, DAN KEJAKSAAN REPUBLIK INDONESIA TAHUN 2011 SEBAGAI MEKANISME PERCEPATAN PENANGANAN TINDAK PIDANA PERBANKAN KHUSUSNYA BANK INDONESIA SEBAGAI PIHAK PELAPOR

1 17 40

KOORDINASI OTORITAS JASA KEUANGAN (OJK) DENGAN LEMBAGA PENJAMIN SIMPANAN (LPS) DAN BANK INDONESIA (BI) DALAM UPAYA PENANGANAN BANK BERMASALAH BERDASARKAN UNDANG-UNDANG RI NOMOR 21 TAHUN 2011 TENTANG OTORITAS JASA KEUANGAN

3 32 52