Sunlin ISSCC 020705 foils

(1)

Innovation and Integration in

Innovation and Integration in

the

the

Nanoelectronics

Nanoelectronics

Era

Era

Sunlin Chou

Sunlin Chou

Technology and Manufacturing Group

Technology and Manufacturing Group

Intel Corporation

Intel Corporation

International Solid

International Solid--State Circuits ConferenceState Circuits Conference February 2005


(2)

Key Points

Key Points

y


(3)

Reduced cost is one of the big Reduced cost is one of the big attractions of integrated

attractions of integrated

electronics, and the cost

electronics, and the cost

advantage continues to increase

advantage continues to increase

as the technology evolves

as the technology evolves

toward the production of larger

toward the production of larger

and larger circuit functions on a

and larger circuit functions on a

single semiconductor substrate.

single semiconductor substrate.”” Electronics, Volume 38,

Electronics, Volume 38,

Number 8, April 19, 1965

Number 8, April 19, 1965

1960

1960 19651965 19701970 19751975 19801980 19851985 19901990 19951995 20002000 20052005 20102010

Transistors

Transistors

Per Die

Per Die

10

1088

10

1077

10

1066

10

1055

10

1044

10

1033

10

1022

10

1011

10

1000

10

1099

10

101010

Moore

Moore

s Law

s Law

-

-

1965

1965

1965 Data (Moore)

1965 Data (Moore)

Source: Intel


(4)

Moore

Moore

s Law

s Law

-

-

2005

2005

4004 4004

8080

8080 80868086

80286

80286 386™386™ProcessorProcessor 486

486™™ProcessorProcessorPentium

Pentium®® ProcessorProcessor

Pentium

PentiumPentium®®II ProcessorII Processor

Pentium®®III ProcessorIII Processor

Pentium

PentiumItaniumItanium®®4 Processor4 Processor

ProcessorProcessor

Transistors

Transistors

Per Die

Per Die

10

1088

10

1077

10

1066

10

1055

10

1044

10

1033

10

1022

10

1011

10

1000

10

1099

10

101010

8008 8008

Itanium

Itanium™™22 ProcessorProcessor

1K 1K 4K 4K 64K 64K 256K 256K 1M 1M 16M 16M 4M 4M 64M 64M 256M 256M512M512M

1G

1G 2G2G 128M

128M

16K 16K

1965 Data (Moore)

1965 Data (Moore)

Microprocessor

Microprocessor

Memory

Memory

1960

1960 19651965 19701970 19751975 19801980 19851985 19901990 19951995 20002000 20052005 20102010

Source: Intel


(5)

The IC Growth Cycle

The IC Growth Cycle

Density

Density

Performance

Performance

Switching energy

Switching energy

Cost per function

Cost per function

Applications

Applications

Devices

Devices

Users

Users

Revenue

Revenue

Consumption

Consumption

grows

grows

Technology

Technology

advances


(6)

Silicon Scaling Still Improves

Silicon Scaling Still Improves

Density, Performance, Power, Cost

Density, Performance, Power, Cost

130 nm 90 nm 130 nm 90 nm Madison

Madison MontecitoMontecito Cores/Threads

Cores/Threads 1/11/1 2/42/4

Transistors

Transistors 0.410.41 1.721.72 BillionBillion L3 Cache

L3 Cache 66 2424 MByteMByte

Frequency

Frequency 1.51.5 >1.7>1.7 GHzGHz Relative Performance

Relative Performance 11 >1.5x>1.5x Thermal Design Power

Thermal Design Power 130130 ~100~100 WattWatt

Source: Intel


(7)

Key Points

Key Points

y

y MooreMoore’’s Law thriving after 40 yearss Law thriving after 40 years

y


(8)

Convergence Drives Growth

Convergence Drives Growth

Convergence

Convergence


(9)

Convergence

Convergence

Wireless Mobile PC

Wireless Mobile PC

10

10

0

0

50

50

100

100

2003

2003

65

65

90

90 9696

2004

2004 20052005 20062006

% of Notebooks

% of Notebooks

that have Wireless

that have Wireless

Source: IDC


(10)

Source: Goldman Sachs and Co., McKinsey & Company; Dec. 2002

Bits of TrafficBits of Traffic

Convergence

Convergence

Data Phones and Traffic

Data Phones and Traffic

2004: Data Phones

2004: Data Phones

Cross

Cross--over Voiceover Voice

Source: WebFeet Research New Cell Phone Sales by Feature Set

New Cell Phone Sales by Feature Set

0

0

100

100

200

200

300

300

400

400

500

500

600

600

700

700

800

800

Million unitsMillion units

2009

2009

2002

2002 20032003 20042004 20052005 20062006 20072007 20082008

Data

Data

Voice

Voice

Data Traffic: 56% Annual

Data Traffic: 56% Annual

Growth thru 2006

Growth thru 2006

Data

Data

Voice

Voice

2001


(11)

Convergence

Convergence

Digital Consumer Electronics

Digital Consumer Electronics

The Great Crossover

The Great Crossover

Digital Technologies Surpass Analog Digital Technologies Surpass Analog

Camera Sales

Camera Sales Millions

Millions

0 5 10 15 20 25

0 5 10 15 20 25

‘9595 ‘‘9696 ‘‘9797 ‘‘9898 ‘‘9999 ‘‘0000 ‘‘0101 ‘‘0202 ‘‘0303 ‘‘0404 ‘‘0505

Portable CD Players

Portable CD Players DIGI

TAL

AN

ALOG

Satellites

Satellites

Cell Phones

Cell Phones

DVD Players

DVD Players

Camcorders

Camcorders

Cameras

Cameras

TVs

TVs

’9595 ’’9696 ’97’97 ’’9898 ’99’99 ’’0000 ’01’01 ’’0202 ’03’03 ’’0404 ’05’05 ’’0606 ’07’07 ’’0808

Crossover Year

Crossover Year

Sources: Consumer Electronics Association, Photo Marketing Association International, Photofinishing News, SBCA/Sky Trends


(12)

Key Points

Key Points

y

y MooreMoore’’s Law thriving after 40 yearss Law thriving after 40 years

y

y Convergence drives IC industry growthConvergence drives IC industry growth

y

y Integrated platforms optimize user experienceIntegrated platforms optimize user experience

y


(13)

Demand Growth Driven by

Demand Growth Driven by

Better User Experiences

Better User Experiences

Memory

MemoryComputing Computing

Graphics

Graphics

Networking

Networking

Wireless

Wireless

Multimedia

Multimedia

Mobility

Mobility

Compactness

Compactness

Battery Life

Battery Life

Virtualization

Virtualization

Security

Security

Multitasking

Multitasking

Ease of Use

Ease of Use

Manageability

Manageability

User

User

Experience


(14)

Math Math

Coprocessor

Coprocessor SSE2SSE2

Itanium Itanium Architecture Architecture Low Low power power Multi Core Multi Core Hyper

Hyper-

-Threading Threading Processor Processor Capabilities Capabilities Integrated Integrated Cache

Cache PCIPCI

AGP 2X AGP 2X USB USB AGP 4X AGP 4X IAPC

IAPCUSB 2.0USB 2.0 AGP 8X

AGP 8X

Serial ATA

Serial ATA HD AudioHD Audio

Infiniband

Infiniband

PCI

PCI--EE

Graphics Graphics Low Power Low Power Chipset Chipset Capabilities Capabilities User User Experience Experience Multiple Multiple Execution Units Execution Units MMX MMX SSE SSE Quickstart Quickstart Speedstep Speedstep Base Base Performance Performance Virtualization Virtualization ProSet ProSet WiFi

WiFi CommsCommsandand

Software Software Capabilities Capabilities 386 386 processor

processor Pentium®Pentiumprocessorprocessor® Pentium®Pentiumprocessorprocessor®IIII PentiumPentium®processorprocessor®IIIIII Pentium Pentium®®IIIIII

Xeon Xeon™™ processor processor Itanium Itanium™™ processor processor Pentium Pentium®®IIIIII

mobile mobile processor processor

Pentium Pentium®®4 4

processor processor Pentium Pentium®®4 4

Processor Processor

with HT with HT

Pentium Pentium®®4 4

mobile mobile processor processor Xeon Xeon™™ processor processor Itanium Itanium™™22

processor processor Math

Math

Coprocessor

Coprocessor SSE2SSE2

Itanium Itanium Architecture Architecture Low Low power power Multi Core Multi Core Hyper

Hyper-

-Threading Threading Processor Processor Capabilities Capabilities Integrated Integrated Cache

Cache PCIPCI

AGP 2X AGP 2X USB USB AGP 4X AGP 4X IAPC

IAPCUSB 2.0USB 2.0 AGP 8X

AGP 8X

Serial ATA

Serial ATA HD AudioHD Audio

Infiniband

Infiniband

PCI

PCI--EE

Graphics Graphics Low Power Low Power Chipset Chipset Capabilities Capabilities User User Experience Experience Multiple Multiple Execution Units Execution Units MMX MMX SSE SSE Quickstart Quickstart Speedstep Speedstep Base Base Performance Performance Virtualization Virtualization ProSet ProSet WiFi

WiFi CommsCommsandand

Software Software Capabilities Capabilities 386 386 processor

processor Pentium®Pentiumprocessorprocessor® Pentium®Pentiumprocessorprocessor®IIII PentiumPentium®processorprocessor®IIIIII Pentium Pentium®®IIIIII

Xeon Xeon™™ processor processor Itanium Itanium™™ processor processor Pentium Pentium®®IIIIII

mobile mobile processor processor

Pentium Pentium®®4 4

processor processor Pentium Pentium®®4 4

Processor Processor

with HT with HT

Pentium Pentium®®4 4

mobile mobile processor processor Xeon Xeon™™ processor processor Itanium Itanium™™22

processor processor

Platforms Optimize User Experience

Platforms Optimize User Experience

Innovate and Integrate

Innovate and Integrate

Example: Intel platforms Example: Intel platforms


(15)

RMS Applications Growing

RMS Applications Growing

Emerging workloads increase need for

Emerging workloads increase need for

high performance parallel processing


(16)

Performance and Power Efficiency

Performance and Power Efficiency

Increase with Parallel Architecture

Increase with Parallel Architecture

Relative

Relative

processor

processor

performance*

performance* (constant power

(constant power

envelope

envelope))

Source: Intel

Source: Intel

*Average of SPECInt2000 and SPECFP2000 rates for Intel desktop p

*Average of SPECInt2000 and SPECFP2000 rates for Intel desktop processors rocessors vs

vs initial Intelinitial Intel®®PentiumPentium®®4 Processor 4 Processor FORECAST

FORECAST

1 10 100

2000 2000

Single

Single--CoreCore

2008+ 2008+ 2004

2004

10X 10X

Dual / Multi

Dual / Multi--CoreCore

3X 3X

FORECAST

FORECAST

1 10 100

2000 2000

Single

Single--CoreCore

2008+ 2008+ 2004

2004

10X 10X

Dual / Multi

Dual / Multi--CoreCore

3X 3X


(17)

Multi

Multi

-

-

Core Parallelism Going Mainstream

Core Parallelism Going Mainstream

Dual

Dual

-

-

Core Processor Plans (Intel)

Core Processor Plans (Intel)

Servers

Servers DesktopDesktop MobileMobile

90nm 90nm Montecito Montecito

(2005) (2005)

90nm 90nm Smithfield Smithfield

(2005) (2005)

65nm 65nm Yonah Yonah (2005) (2005)

90nm 90nm

Server Processor Server Processor

(2006) (2006)

65nm 65nm

Desktop Processor Desktop Processor

(2006) (2006)


(18)

Key Points

Key Points

y

y MooreMoore’’s Law thriving after 40 yearss Law thriving after 40 years

y

y Convergence drives IC industry growthConvergence drives IC industry growth

y

y Integrated platforms optimize user experienceIntegrated platforms optimize user experience

y

y MultiMulti--core parallelism going mainstreamcore parallelism going mainstream

y


(19)

Silicon Technology Changes to

Silicon Technology Changes to

Increase Power Efficiency

Increase Power Efficiency

1960

1960

s: Bipolar

s: Bipolar

1970

1970

s: PMOS, NMOS

s: PMOS, NMOS

1980

1980

s: CMOS

s: CMOS

1990

1990

s: Voltage scaling (P = CV

s: Voltage scaling (P = CV

22

f)

f)

2000


(20)

Power Efficient 90nm Transistors with

Power Efficient 90nm Transistors with

Strained Silicon

Strained Silicon

High

High Stress Stress

Film Film

NMOS

NMOS

SiGe

SiGe SiGeSiGe

PMOS

PMOS

Compressive channel strain Tensile channel strai Compressive channel strain Tensile channel strainn 30% drive current increase 10% drive current increa 30% drive current increase 10% drive current increasese

Innovate and integrate

Innovate and integrate

for cost effective production

for cost effective production


(21)

Strained Silicon Improves Transistor

Strained Silicon Improves Transistor

Performance and/or Reduces Leakage

Performance and/or Reduces Leakage

1 1 10 10 100 100 1000 1000

0.2

0.2 0.40.4 0.60.6 0.80.8 1.01.0 1.21.2 1.41.4 1.61.6

Transistor Drive Current

Transistor Drive Current ((mAmA/um) /um) Std

Std StrainStrain StdStd StrainStrain

+25% I

+25% IONON +10% I+10% IONON

0.04x I 0.04x I OFFOFF

0.20x I 0.20x I OFFOFF

PMOS

PMOS NMOSNMOS

Transistor Transistor Leakage Leakage Current Current (

(nAnA/um)/um)


(22)

Advances in Power Efficient Design

Advances in Power Efficient Design

Using Using prior prior design design techniques techniques

With new With new

power power reduction reduction techniques techniques

ISSCC 2005 P10.1 ISSCC 2005 P10.1

“The Implementation of The Implementation of a 2

a 2--core Multicore Multi--ThreadedThreaded Itanium

ItaniumTMTM Family Family

Processor Processor””

Power Power

(W) (W)


(23)

Circuit Techniques Reduce

Circuit Techniques Reduce

Source Drain Leakage

Source Drain Leakage

Body Bias

Body Bias Stack EffectStack Effect Sleep TransistorSleep Transistor

Equal Loading Equal Loading

+ + VeVe Vdd

Vdd VbpVbp

Vbn Vbn

-- VeVe

Logic Logic Block Block

Leakage Leakage Reduction


(24)

Sleep Transistor Reduces SRAM

Sleep Transistor Reduces SRAM

Leakage Power

Leakage Power

70

70 MbitMbit SRAM leakage current mapSRAM leakage current map

V VDDDD

SRAM SRAM Cache Cache Block Block NMOS

NMOS Sleep Sleep Transistor

V VSSSS

Transistor

Without sleep transistor

Without sleep transistor With sleep transistorWith sleep transistor

Accessed block

Accessed block

>3x SRAM leakage reduction on inactive blocks

>3x SRAM leakage reduction on inactive blocks


(25)

Sleep Transistors Reduce ALU Leakage

Sleep Transistors Reduce ALU Leakage

Scan Scan FIFO FIFO Scan Scan out out Sleep Sleep ALU ALU Body bias Body bias Control Control

37X leakage reduction

37X leakage reduction

demonstrated on test chip

demonstrated on test chip

Scan

Scan

PMOS

PMOS underdriveunderdriveVVcccc

PMOS overdrive

PMOS overdrive VVssss

Virtual

Virtual VVcccc

Virtual

Virtual VVssss

Scan Scan capture capture control control Dynamic Dynamic ALU

ALU 3232

NMOS overdrive

NMOS overdrive VVcccc

NMOS

NMOS underdriveunderdriveVVssss

ALU core

ALU core

3

3--bit A/Dbit A/D ALU ALU Body Body Bias Bias PMOS PMOS Sleep Sleep Body Body Bias Bias V

Vssssexternalexternal V

Vcccc

external

external

Sleep transistor

Sleep transistor

and body bias

and body bias

control

control

Sleep transistors Sleep transistors


(26)

Key Points

Key Points

y

y MooreMoore’’s Law thriving after 40 yearss Law thriving after 40 years

y

y Convergence drives IC industry growthConvergence drives IC industry growth

y

y Integrated platforms optimize user experienceIntegrated platforms optimize user experience

y

y MultiMulti--core parallelism going mainstreamcore parallelism going mainstream

y

y Holistic solutions deliver power efficiencyHolistic solutions deliver power efficiency

y

y Nanotechnology will extend IC advancesNanotechnology will extend IC advances

y


(27)

Silicon Technology Reaches

Silicon Technology Reaches

Nanoscale

Nanoscale

Micron Micron 10000 10000 1000 1000 100 100 10 10 10 10 1 1 0.1 0.1 0.01 0.01 Nano

Nano- -meter meter Nanotechnology Nanotechnology (< 100nm) (< 100nm) 130nm 130nm 90nm 90nm 70nm 70nm 50nm 50nm Gate Length

Gate Length 65nm65nm

35nm

35nm

1970

1970 19801980 19901990 20002000 20102010 20202020

45nm 45nm 32nm 32nm 22nm 22nm 25nm 25nm 18nm 18nm 12nm 12nm 0.7X every 2 years

Nominal feature size

Nominal feature size

Source: Intel Micron Micron 10000 10000 1000 1000 100 100 10 10 10 10 1 1 0.1 0.1 0.01 0.01 Nano

Nano- -meter meter Nanotechnology Nanotechnology (< 100nm) (< 100nm) 130nm 130nm 90nm 90nm 70nm 70nm 50nm 50nm Gate Length

Gate Length 65nm65nm

35nm

35nm

1970

1970 19801980 19901990 20002000 20102010 20202020

45nm 45nm 32nm 32nm 22nm 22nm 25nm 25nm 18nm 18nm 12nm 12nm 0.7X every 2 years

Nominal feature size

Nominal feature size


(28)

Nanotechnology Hallmarks

Nanotechnology Hallmarks

(For

(For

Nanoelectronics

Nanoelectronics

)

)

y

y Structures measured in nanometersStructures measured in nanometers

Less than 0.1Less than 0.1--micron (100nm)micron (100nm)

y

y New processes, materials, device structuresNew processes, materials, device structures

Incrementally changing silicon technology baseIncrementally changing silicon technology base

y

y Materials manipulated on atomic scaleMaterials manipulated on atomic scale

In one or more dimensionsIn one or more dimensions

y

y Increasing use of selfIncreasing use of self--assemblyassembly

Using chemical properties to form structuresUsing chemical properties to form structures

Nanotechnology innovations will extend

Nanotechnology innovations will extend

silicon technology and Moore


(29)

Design Your Own Film with

Design Your Own Film with

Atomic

Atomic

Layer Deposition (ALD)

Layer Deposition (ALD)

Step 3

Step 3

Step 4

Step 4

Step 2

Step 2

A

A

Step 1

Step 1

A

A

A

A

B

B

A

A

B

B

Atomic level manipulation + Self


(30)

ALD Enables High

ALD Enables High

-

-

k Dielectric

k Dielectric

to Reduce Gate Leakage

to Reduce Gate Leakage

Silicon substrate Gate

3.0nm High-k

Silicon substrate 1.2nm SiO2

Gate

High

High--k vs. SiOk vs. SiO22 BenefitBenefit Gate capacitance

Gate capacitance 60% greater60% greater Faster transistorsFaster transistors Gate dielectric

Gate dielectric leakage

leakage > 100x reduction> 100x reduction LowerLower powerpower

Source: Intel

Process integration is the key challenge


(31)

Nanostructures for the Next Decade

Nanostructures for the Next Decade

(Transistor Research at Intel)

(Transistor Research at Intel)

Non

Non--planarplanar Tri

Tri--GateGate

Architecture

Architecture

Si

Si DeviceDevice Miniaturization Miniaturization Carbon Carbon Nanotube Nanotube Transistor Transistor III

III--V DeviceV Device Research Research Gate Source Si body (b) Drain Source CNT Single-wall D = 1.4 nm

Gate (Pt) Drain

(Pd)

Lg = 75 nm

(d) Gate Drain Source Source (c) Multi epitaxial layers Gate Source Si body (b) Drain Gate Source Si body (b) Drain Source CNT Single-wall D = 1.4 nm

Gate (Pt) Drain

(Pd)

Lg = 75 nm

(d)

Source

CNT

Single-wall D = 1.4 nm

Gate (Pt) Drain

(Pd)

Lg = 75 nm

(d) Gate Drain Source Source Multi epitaxial layers Gate Drain Source Source Multi epitaxial layers (c) (a)

L = 10 nmg

Gate Gate Source Source Drain Drain Source: Intel


(32)

0.1 1 10 100

1 10 100 1000 10000

GATE LENGTH LG [ nm]

G

A

T

E

D

E

L

A

Y

C

V

/

I

[

p

s

]

Si MOSFETs CNT FETs I I I - V FETs

NMOS

Benchmarking

Benchmarking

Nanotransistor

Nanotransistor

Progress

Progress

Source: Intel compilation of published data


(33)

Lithography Must Break Through

Lithography Must Break Through

to Shorter Wavelength (EUV* @ 13.5nm)

to Shorter Wavelength (EUV* @ 13.5nm)

* Extreme Ultraviolet

* Extreme Ultraviolet

1000 1000

100 100

10 10

’8989 ’’9191 ’’9393 ’’9595 ’’9797 ’’9999 ’’0101 ’’0303 ’’0505 ’’0707 ’’0909 ’’1111

Feature size Feature size

EU V EU V

Lithography Lithography Wavelength Wavelength

193nm & extensions 193nm & extensions 248nm

248nm nm

nm

Gap

Gap


(34)

Lithography Must Break Through

Lithography Must Break Through

to Shorter Wavelength (EUV* @ 13.5nm)

to Shorter Wavelength (EUV* @ 13.5nm)

* Extreme Ultraviolet

* Extreme Ultraviolet

Source: Intel

1000 1000

100 100

10 10

’8989 ’’9191 ’’9393 ’’9595 ’’9797 ’’9999 ’’0101 ’’0303 ’’0505 ’’0707 ’’0909 ’’1111

Feature size Feature size

EU V EU V

Lithography Lithography Wavelength Wavelength

193nm & extensions 193nm & extensions 248nm

248nm nm

nm

Gap

Gap

EUV LLC

EUV LLC

Prototype EUV Tool Demonstrated Prototype EUV Tool Demonstrated

EUV LLC invested heavily to spur innovation


(35)

EUV Lithography in

EUV Lithography in

Commercial Development

Commercial Development

EUV Micro exposure tool (MET) EUV Micro exposure tool (MET)

EUV MET Image (8/04) EUV MET Image (8/04)

Integrated development in progress

Integrated development in progress

y

y Source power and lifetimeSource power and lifetime

y

y Defect free mask fabrication and handlingDefect free mask fabrication and handling

y

y Optics lifetimeOptics lifetime

y

y Resist performanceResist performance


(36)

EUV Source Power Increased

EUV Source Power Increased

0.1 0.1 1 1 10 10 100 100 1000 1000

Jul

Jul--0101 JanJan--0202 JulJul--0202 JanJan--0303 JulJul--0303 JanJan--0404 JulJul--0404 JanJan--0505 JulJul--0505 JanJan--0606

EUV Power at Intermediate Focus [W]

EUV Power at Intermediate Focus [W]

115 W Production Requirement

115 W Production Requirement

Exponential fit to data

Exponential fit to data

Average of reported data

Average of reported data

(SEMATECH Source Workshops)

(SEMATECH Source Workshops)


(37)

EUV Mask Blank Defects Reduced

EUV Mask Blank Defects Reduced

Results from SEMATECH

Results from SEMATECH

Source: SEMATECH 0.001

0.01 0.1 1

Jan-04 Apr-04 Jul-04 Sep-04 Dec-04

P rocess ad ded d e fect den s it y @ 80nm sensi ti vi ty ( c m -2)

Only 1 added

Only 1 added

defect!

defect! Goal

Target for production @ 32nm Target for production @ 32nm

0.001 0.01 0.1 1

Jan-04 Apr-04 Jul-04 Sep-04 Dec-04

P rocess ad ded d e fect den s it y @ 80nm sensi ti vi ty ( c m -2)

Only 1 added

Only 1 added

defect!

defect! Goal

Target for production @ 32nm Target for production @ 32nm


(38)

Key Points

Key Points

y

y MooreMoore’’s Law thriving after 40 yearss Law thriving after 40 years

y

y Convergence drives IC industry growthConvergence drives IC industry growth

y

y Integrated platforms optimize user experienceIntegrated platforms optimize user experience

y

y MultiMulti--core parallelism going mainstreamcore parallelism going mainstream

y

y Holistic solutions deliver power efficiencyHolistic solutions deliver power efficiency

y

y Nanotechnology will extend IC advancesNanotechnology will extend IC advances

y

y Lithography innovations remain vitalLithography innovations remain vital

y

y MooreMoore’’s Law will outlive CMOSs Law will outlive CMOS

y


(39)

Moore

Moore

s Law Will Outlive CMOS

s Law Will Outlive CMOS

Transistors/Die

Transistors/Die

Bipolar Bipolar

1960 1970 1980 1990 2000 2010 2020 2030

CMOS CMOS

1µm 100nm 10nm

10µm

PMOS PMOS

10 1088

10 1077

10 1066

10 1055

10 1044

10 1033

10 1022

10 1011

10 1000

10 1099

10

101010 1965 Data (Moore)1965 Data (Moore)

Microprocessor

Microprocessor

Memory

Memory

10 101111

10 101212

10 101313

Voltage

Voltage

Scaling

Scaling ScalingPwrScalingPwrEffEff New New structuresstructuresNanoNano- -NMOS

NMOS

Kilo Xtor

Mega

Xtor GigaXtor TeraXtor

Beyond CMOS? Beyond CMOS? Spin based? Spin based? Molecular? Molecular? Other? Other?


(40)

Innovation and Integration

Innovation and Integration

Will Sustain Moore

Will Sustain Moore

s Law

s Law

Innovation

Innovation

Integration

Integration

Identify needs and

Identify needs and

create capabilities

create capabilities

that drive growth

that drive growth

Deliver platforms

Deliver platforms

to optimize user

to optimize user

experience

experience

Anticipate barriers

Anticipate barriers

and seek timely

and seek timely

breakthroughs

breakthroughs

Integrate new

Integrate new

materials, devices,

materials, devices,

processes

processes

Make strategic

Make strategic

technology

technology

transitions

transitions

Coordinate

Coordinate

strategic shifts

strategic shifts

across industry


(41)

Key Points

Key Points

y

y MooreMoore’’s Law thriving after 40 yearss Law thriving after 40 years

y

y Convergence drives IC industry growthConvergence drives IC industry growth

y

y Integrated platforms optimize user experienceIntegrated platforms optimize user experience

y

y MultiMulti--core parallelism going mainstreamcore parallelism going mainstream

y

y Holistic solutions deliver power efficiencyHolistic solutions deliver power efficiency

y

y Nanotechnology will extend IC advancesNanotechnology will extend IC advances

y

y Lithography innovations remain vitalLithography innovations remain vital

y

y MooreMoore’’s Law will outlive CMOSs Law will outlive CMOS

y


(1)

EUV Source Power Increased

EUV Source Power Increased

0.1

0.1

1

1

10

10

100

100

1000

1000

Jul

Jul--0101 JanJan--0202 JulJul--0202 JanJan--0303 JulJul--0303 JanJan--0404 JulJul--0404 JanJan--0505 JulJul--0505 JanJan--0606

EUV Power at Intermediate Focus [W]

EUV Power at Intermediate Focus [W]

115 W Production Requirement

115 W Production Requirement

Exponential fit to data

Exponential fit to data

Average of reported data

Average of reported data

(SEMATECH Source Workshops)

(SEMATECH Source Workshops)


(2)

EUV Mask Blank Defects Reduced

EUV Mask Blank Defects Reduced

Results from SEMATECH Results from SEMATECH

Source: SEMATECH

0.001 0.01 0.1 1

Jan-04 Apr-04 Jul-04 Sep-04 Dec-04

P rocess ad ded d e fect den s it y @ 80nm sensi ti vi ty ( c m -2)

Only 1 added

Only 1 added

defect!

defect! Goal

Target for production @ 32nm Target for production @ 32nm

0.001 0.01 0.1 1

Jan-04 Apr-04 Jul-04 Sep-04 Dec-04

P rocess ad ded d e fect den s it y @ 80nm sensi ti vi ty ( c m -2)

Only 1 added

Only 1 added

defect!

defect! Goal

Target for production @ 32nm Target for production @ 32nm


(3)

Key Points

Key Points

y

y MooreMoore’’s Law thriving after 40 yearss Law thriving after 40 years

y

y Convergence drives IC industry growthConvergence drives IC industry growth

y

y Integrated platforms optimize user experienceIntegrated platforms optimize user experience

y

y MultiMulti--core parallelism going mainstreamcore parallelism going mainstream

y

y Holistic solutions deliver power efficiencyHolistic solutions deliver power efficiency

y

y Nanotechnology will extend IC advancesNanotechnology will extend IC advances

y

y Lithography innovations remain vitalLithography innovations remain vital

y

y MooreMoore’’s Law will outlive CMOSs Law will outlive CMOS

y


(4)

Moore

Moore

s Law Will Outlive CMOS

s Law Will Outlive CMOS

Transistors/Die

Transistors/Die

Bipolar

Bipolar

1960 1970 1980 1990 2000 2010 2020 2030

CMOS

CMOS

1µm 100nm 10nm

10µm

PMOS

PMOS

10

1088

10

1077

10

1066

10

1055

10

1044

10

1033

10

1022

10

1011

10

1000

10

1099

10

101010 1965 Data (Moore)1965 Data (Moore)

Microprocessor

Microprocessor

Memory

Memory

10

101111

10

101212

10

101313

Voltage

Voltage

Scaling

Scaling ScalingPwrScalingPwrEffEff New New structuresstructuresNanoNano-

-NMOS

NMOS

Kilo Xtor

Mega

Xtor GigaXtor TeraXtor

Beyond CMOS? Beyond CMOS? Spin based? Spin based? Molecular? Molecular? Other? Other?


(5)

Innovation and Integration

Innovation and Integration

Will Sustain Moore

Will Sustain Moore

s Law

s Law

Innovation

Innovation

Integration

Integration

Identify needs and

Identify needs and

create capabilities

create capabilities

that drive growth

that drive growth

Deliver platforms

Deliver platforms

to optimize user

to optimize user

experience

experience

Anticipate barriers

Anticipate barriers

and seek timely

and seek timely

breakthroughs

breakthroughs

Integrate new

Integrate new

materials, devices,

materials, devices,

processes

processes

Make strategic

Make strategic

technology

technology

transitions

transitions

Coordinate

Coordinate

strategic shifts

strategic shifts

across industry


(6)

Key Points

Key Points

y

y MooreMoore’’s Law thriving after 40 yearss Law thriving after 40 years

y

y Convergence drives IC industry growthConvergence drives IC industry growth

y

y Integrated platforms optimize user experienceIntegrated platforms optimize user experience

y

y MultiMulti--core parallelism going mainstreamcore parallelism going mainstream

y

y Holistic solutions deliver power efficiencyHolistic solutions deliver power efficiency

y

y Nanotechnology will extend IC advancesNanotechnology will extend IC advances

y

y Lithography innovations remain vitalLithography innovations remain vital

y

y MooreMoore’’s Law will outlive CMOSs Law will outlive CMOS

y