Scheme of proof of Theorems 2.1 and 2.2

Random Strict Partitions and Determinantal Point Processes 167 Remark 1. Note that the kernel K ν,ξ given by 8 can be viewed as a discrete analogue of an integrable operator if as variables we take x 2 and y 2 . About integrable operators, e.g., see [16, 11]. Discrete integrable operators are discussed in [3] and [7, §6]. Remark 2. There is an identity φ x = e φx 1 + ξ − ξ1 + 2ν − x1 − ξ x1 − ξ 2 φ 1 x, 9 which is a combination of 2.838, 2.839 and 2.92 in [12]. Therefore, A 2 x = A 1 x + c Bx, where c does not depend on x. Thus, the kernel 8 with A 1 is identical to the one with A 2 . Furthermore, all our formulas must be symmetric with respect to the replacement of ν by −ν. Clearly, Ξx, y and all the functions φ i x, i ∈ Z ≥0 , possess this property, so the kernel 7 and the kernel 8 with A 1 do not change under the substitution ν → −ν. The same holds for the kernel 8 with A 2 , because from 9 we have e φx| ν→−ν = e φx + ec x φ 1 x, where ec does not depend on x.

2.3 Scheme of proof of Theorems 2.1 and 2.2

We begin with the argument similar to [26], but instead of the infinite wedge space we take the Fock space with the orthonormal basis v λ = e λ 1 ∧ e λ 2 ∧ · · · ∧ e λ ℓλ indexed by all strict partitions in particular, v ; = 1. A similar space is used in [24, §3] and [38, §5.2]. By calculations in this Fock space we first obtain a Pfaffian formula for the correlation functions ρ ν,ξ of the point process P ν,ξ and not a determinantal formula as it was in [26]. Proposition 2. There exists a function Φ ν,ξ : Z \ {0} 2 → C such that for every finite subset X = x 1 , . . . , x n ⊂ Z we have ρ ν,ξ X = −1 P n i=1 x i · Pf ΦX , where Pf means Pfaffian. Here ΦX is the 2n × 2n skew-symmetric matrix with rows and columns indexed by x 1 , . . . , x n , −x n , . . . , −x 1 such that the i j-th element of the matrix ΦX above the main diagonal is Φ ν,ξ i, j, where i and j take values x 1 , . . . , x n , −x n , . . . , −x 1 . Now we explain how one can convert the above Pfaffian formula for the correlation functions of P ν,ξ to a determinantal one. It turns out that Φ ν,ξ satisfies the following identities here x, y ∈ Z \ {0}: • If x 6= y, then Φ ν,ξ x, − y = −1 y x+ y x − y Φ ν,ξ x, y. • If x 6= − y, then Φ ν,ξ y, x = −Φ ν,ξ x, y and, moreover, Φ ν,ξ −x, − y = −1 x+ y+1 Φ ν,ξ x, y. • If x 6= 0, then Φ ν,ξ x, −x + Φ ν,ξ −x, x = −1 x . Fix a finite subset X = x 1 , . . . , x n ⊂ Z . Define C kl := δ kl + −1 x k ∧l x k ∧l −x n x k ∧l +x n I {k+l=2n+1} k, l = 1, . . . , 2n, where k ∧ l means the minimum of k and l, and I means the indicator. Clearly, the 2n × 2n matrix C = [C kl ] is invertible. Using the above identities for Φ ν,ξ , we obtain CΦX C ′ = M −M ′ , where .. ′ means the matrix transpose and M has format n × n. It follows from properties of Pfaffians that Pf ΦX = −1 nn −12 det C −1 det M . There exist two diagonal n × n matrices D 1 168 Electronic Communications in Probability and D 2 such that detD 1 D 2 = −1 P n i=1 x i det C −1 and D 1 M ‰ D 2 = K ν,ξ X = [K ν,ξ x i , x j ] n i, j=1 for some Z × Z matrix K ν,ξ . Here M ‰ is the matrix that is obtained from M by rotation by 90 degrees counter–clockwise. Note that det M ‰ = −1 nn −12 det M . Thus, ρ ν,ξ X = −1 P n i=1 x i Pf ΦX = det K ν,ξ X , which means that K ν,ξ is the desired correla- tion kernel. The kernel K ν,ξ is related to Φ ν,ξ as follows: K ν,ξ x, y = 2 −1 y p x y x + y Φ ν,ξ x, − y, x, y ∈ Z . 10 We obtain explicit expressions for Φ ν,ξ in terms of the Gauss hypergeometric function. Their form is similar to formulas 3.16 and 3.17 in [26]. These expressions for Φ ν,ξ together with relation 10 imply Theorems 2.1 and 2.2, respectively. Remark 3. Let L ν,ξ be the operator defined by 5 with ψ = ψ ν,ξ given by 4. Once formula 8 for K ν,ξ is obtained, one can directly check that K ν,ξ = L ν,ξ 1 + L ν,ξ −1 . Indeed, this relation is equivalent to K ν,ξ + K ν,ξ L ν,ξ − L ν,ξ = 0, and the computation of the matrix product K ν,ξ L ν,ξ mainly reduces to the computation of sums of the form P ∞ k=1 ξ k Γ 1 2 +ν+kΓ 1 2 −ν+k kk −1 f k k+a , where a 6= −1, −2, . . . is some constant and f k is one of the functions kφ k, kφ 1 k, or φ 1 k. These sums can be computed using Lemma 3.4 in Appendix in [7].

2.4 Double contour integral representations

Dokumen yang terkait

AN ALIS IS YU RID IS PUT USAN BE B AS DAL AM P E RKAR A TIND AK P IDA NA P E NY E RTA AN M E L AK U K A N P R AK T IK K E DO K T E RA N YA NG M E N G A K IB ATK AN M ATINYA P AS IE N ( PUT USA N N O MOR: 9 0/PID.B /2011/ PN.MD O)

0 82 16

ANALISIS FAKTOR YANGMEMPENGARUHI FERTILITAS PASANGAN USIA SUBUR DI DESA SEMBORO KECAMATAN SEMBORO KABUPATEN JEMBER TAHUN 2011

2 53 20

EFEKTIVITAS PENDIDIKAN KESEHATAN TENTANG PERTOLONGAN PERTAMA PADA KECELAKAAN (P3K) TERHADAP SIKAP MASYARAKAT DALAM PENANGANAN KORBAN KECELAKAAN LALU LINTAS (Studi Di Wilayah RT 05 RW 04 Kelurahan Sukun Kota Malang)

45 393 31

FAKTOR – FAKTOR YANG MEMPENGARUHI PENYERAPAN TENAGA KERJA INDUSTRI PENGOLAHAN BESAR DAN MENENGAH PADA TINGKAT KABUPATEN / KOTA DI JAWA TIMUR TAHUN 2006 - 2011

1 35 26

A DISCOURSE ANALYSIS ON “SPA: REGAIN BALANCE OF YOUR INNER AND OUTER BEAUTY” IN THE JAKARTA POST ON 4 MARCH 2011

9 161 13

Pengaruh kualitas aktiva produktif dan non performing financing terhadap return on asset perbankan syariah (Studi Pada 3 Bank Umum Syariah Tahun 2011 – 2014)

6 101 0

Pengaruh pemahaman fiqh muamalat mahasiswa terhadap keputusan membeli produk fashion palsu (study pada mahasiswa angkatan 2011 & 2012 prodi muamalat fakultas syariah dan hukum UIN Syarif Hidayatullah Jakarta)

0 22 0

Pendidikan Agama Islam Untuk Kelas 3 SD Kelas 3 Suyanto Suyoto 2011

4 108 178

ANALISIS NOTA KESEPAHAMAN ANTARA BANK INDONESIA, POLRI, DAN KEJAKSAAN REPUBLIK INDONESIA TAHUN 2011 SEBAGAI MEKANISME PERCEPATAN PENANGANAN TINDAK PIDANA PERBANKAN KHUSUSNYA BANK INDONESIA SEBAGAI PIHAK PELAPOR

1 17 40

KOORDINASI OTORITAS JASA KEUANGAN (OJK) DENGAN LEMBAGA PENJAMIN SIMPANAN (LPS) DAN BANK INDONESIA (BI) DALAM UPAYA PENANGANAN BANK BERMASALAH BERDASARKAN UNDANG-UNDANG RI NOMOR 21 TAHUN 2011 TENTANG OTORITAS JASA KEUANGAN

3 32 52