Double contour integral representations Poissonized Plancherel measure

168 Electronic Communications in Probability and D 2 such that detD 1 D 2 = −1 P n i=1 x i det C −1 and D 1 M ‰ D 2 = K ν,ξ X = [K ν,ξ x i , x j ] n i, j=1 for some Z × Z matrix K ν,ξ . Here M ‰ is the matrix that is obtained from M by rotation by 90 degrees counter–clockwise. Note that det M ‰ = −1 nn −12 det M . Thus, ρ ν,ξ X = −1 P n i=1 x i Pf ΦX = det K ν,ξ X , which means that K ν,ξ is the desired correla- tion kernel. The kernel K ν,ξ is related to Φ ν,ξ as follows: K ν,ξ x, y = 2 −1 y p x y x + y Φ ν,ξ x, − y, x, y ∈ Z . 10 We obtain explicit expressions for Φ ν,ξ in terms of the Gauss hypergeometric function. Their form is similar to formulas 3.16 and 3.17 in [26]. These expressions for Φ ν,ξ together with relation 10 imply Theorems 2.1 and 2.2, respectively. Remark 3. Let L ν,ξ be the operator defined by 5 with ψ = ψ ν,ξ given by 4. Once formula 8 for K ν,ξ is obtained, one can directly check that K ν,ξ = L ν,ξ 1 + L ν,ξ −1 . Indeed, this relation is equivalent to K ν,ξ + K ν,ξ L ν,ξ − L ν,ξ = 0, and the computation of the matrix product K ν,ξ L ν,ξ mainly reduces to the computation of sums of the form P ∞ k=1 ξ k Γ 1 2 +ν+kΓ 1 2 −ν+k kk −1 f k k+a , where a 6= −1, −2, . . . is some constant and f k is one of the functions kφ k, kφ 1 k, or φ 1 k. These sums can be computed using Lemma 3.4 in Appendix in [7].

2.4 Double contour integral representations

Here we present two double contour integral expressions for the hypergeometric–type kernel K ν,ξ . Formulas of this type are useful in certain limit transitions, e.g., see [28, 9, 30]. To obtain double contour integral formulas for the correlation kernel K ν,ξ , we write K ν,ξ as the sum 7 and use the contour integral representation for the hypergeometric function [9, Lemma 2.2] combined with the identity [12, 2.92]. To shorten the notation, set gx := Æ Γ 1 2 +ν+xΓ 1 2 −ν+x Γ 1 2 +ν+x . Note that for our values of ν see the end of §1.1 the expression under the square root is positive for all x ∈ Z. Proposition 3. For all x, y ∈ Z we have g x g y K ν,ξ x, y = 2px y x + y 1 2πi 2 I { w 1 } I { w 2 } 1 − w 1 p ξ − 1 2 +ν  1 − p ξ w 1   1 2 +ν × × 1 − w 2 p ξ − 1 2 −ν  1 − p ξ w 2   1 2 −ν w −x 1 w − y 2 w 1 w 2 − 1 d w 1 d w 2 − p x y x + y 1 − ξ 2πi 2 I { w 1 } I { w 2 } 1 − w 1 p ξ − 1 2 +ν  1 − p ξ w 1   − 1 2 +ν × × 1 − w 2 p ξ − 1 2 −ν  1 − p ξ w 2   − 1 2 −ν d w 1 d w 2 w x+1 1 w y+1 2 . The contours w 1 and w 2 go around 0 and p ξ in positive direction leaving 1 p ξ outside. More- over, in the first integral we have to impose an extra condition: the contour {w −1 1 } lies in the interior of the contour w 2 . Random Strict Partitions and Determinantal Point Processes 169 Proposition 4. Let x, y ∈ Z . Then g − y g −x K ν,ξ x, y = p x y x + y 1 − ξ 2πi 2 I { w 1 } I { w 2 } 1 − w 1 p ξ − 1 2 +ν+x  1 − p ξ w 1   − 1 2 +ν−x × × 1 − w 2 p ξ − 1 2 −ν+ y  1 − p ξ w 2   − 1 2 −ν− y w −x 1 w − y 2 w 1 w 2 + 1 w 1 w 2 − 1 · d w 1 d w 2 w 1 w 2 . Here the contours w 1 and w 2 are as in the first integral in Proposition 3.

2.5 Poissonized Plancherel measure

The poissonized Plancherel measure Pl θ defined by 2 gives rise to the point process P θ on Z , see §1.2. Denote the L–operator corresponding to P θ by L θ see §2.1. The operator L θ is given by 5 with ψx replaced by ψ θ x = θ x 2x 2 . Theorem 2.3. The point process P θ is determinantal with the correlation kernel K θ x, y = p x y x 2 − y 2 2 p θ J x −1 J y − 2 p θ J y −1 J x − x − yJ x J y , x, y ∈ Z . Here J k = J k 2 p θ is the Bessel function of the first kind. The correlation kernel K θ is similar to the discrete Bessel kernel from [19] and [5] but note the appearance of additional summands in K θ . The kernel K θ is obtained from the hypergeometric– type kernel K ν,ξ via the Plancherel degeneration §1.1. Moreover, one can check that K θ = L θ 1 + L θ −1 using the identities for the Bessel functions J k 2 p θ from §2 in [5]. The poissonized Plancherel measure is a special case of the shifted Schur measure introduced and studied in [37, 24]. In [24, §3] a Pfaffian formula for the correlation functions of the shifted Schur measure was obtained. This Pfaffian formula essentially coincides with the Plancherel degenera- tion of the formula from Proposition 2. Therefore as in §2.3 the Pfaffian formula from [24] turns into a determinantal formula from Theorem 2.3 above.

2.6 Schur–type measure

Dokumen yang terkait

AN ALIS IS YU RID IS PUT USAN BE B AS DAL AM P E RKAR A TIND AK P IDA NA P E NY E RTA AN M E L AK U K A N P R AK T IK K E DO K T E RA N YA NG M E N G A K IB ATK AN M ATINYA P AS IE N ( PUT USA N N O MOR: 9 0/PID.B /2011/ PN.MD O)

0 82 16

ANALISIS FAKTOR YANGMEMPENGARUHI FERTILITAS PASANGAN USIA SUBUR DI DESA SEMBORO KECAMATAN SEMBORO KABUPATEN JEMBER TAHUN 2011

2 53 20

EFEKTIVITAS PENDIDIKAN KESEHATAN TENTANG PERTOLONGAN PERTAMA PADA KECELAKAAN (P3K) TERHADAP SIKAP MASYARAKAT DALAM PENANGANAN KORBAN KECELAKAAN LALU LINTAS (Studi Di Wilayah RT 05 RW 04 Kelurahan Sukun Kota Malang)

45 393 31

FAKTOR – FAKTOR YANG MEMPENGARUHI PENYERAPAN TENAGA KERJA INDUSTRI PENGOLAHAN BESAR DAN MENENGAH PADA TINGKAT KABUPATEN / KOTA DI JAWA TIMUR TAHUN 2006 - 2011

1 35 26

A DISCOURSE ANALYSIS ON “SPA: REGAIN BALANCE OF YOUR INNER AND OUTER BEAUTY” IN THE JAKARTA POST ON 4 MARCH 2011

9 161 13

Pengaruh kualitas aktiva produktif dan non performing financing terhadap return on asset perbankan syariah (Studi Pada 3 Bank Umum Syariah Tahun 2011 – 2014)

6 101 0

Pengaruh pemahaman fiqh muamalat mahasiswa terhadap keputusan membeli produk fashion palsu (study pada mahasiswa angkatan 2011 & 2012 prodi muamalat fakultas syariah dan hukum UIN Syarif Hidayatullah Jakarta)

0 22 0

Pendidikan Agama Islam Untuk Kelas 3 SD Kelas 3 Suyanto Suyoto 2011

4 108 178

ANALISIS NOTA KESEPAHAMAN ANTARA BANK INDONESIA, POLRI, DAN KEJAKSAAN REPUBLIK INDONESIA TAHUN 2011 SEBAGAI MEKANISME PERCEPATAN PENANGANAN TINDAK PIDANA PERBANKAN KHUSUSNYA BANK INDONESIA SEBAGAI PIHAK PELAPOR

1 17 40

KOORDINASI OTORITAS JASA KEUANGAN (OJK) DENGAN LEMBAGA PENJAMIN SIMPANAN (LPS) DAN BANK INDONESIA (BI) DALAM UPAYA PENANGANAN BANK BERMASALAH BERDASARKAN UNDANG-UNDANG RI NOMOR 21 TAHUN 2011 TENTANG OTORITAS JASA KEUANGAN

3 32 52