Moments Logarithmic Sobolev inequality

212 Electronic Communications in Probability Theorem 1.2. 1. P θ ,γ,x q T λ T ˆ θ T − θ ∈ · , T ≥ 1 satisfies the large deviation principle with speed λ T and rate function I 1 u = u 2 4 θ , that is, for any closed set F in R, lim sup n →∞ 1 λ T log P θ ,γ,x r T λ T ˆ θ T − θ ∈ F ≤ − inf u ∈F u 2 4 θ and open set G in R, lim inf n →∞ 1 λ T log P θ ,γ,x r T λ T ˆ θ T − θ ∈ G ≥ − inf u ∈G u 2 4 θ . 2. P θ ,γ,x q T λ T ˆ γ T − γ ∈ · , T ≥ 1 satisfies the large deviation principle with speed λ T and rate function I 2 u = θ u 2 2 θ +2γ 2 , that is, for any closed set F in R, lim sup n →∞ 1 λ T log P θ ,γ,x r T λ T ˆ γ T − γ ∈ F ≤ − inf u ∈F θ u 2 2 θ + 2γ 2 and open set G in R, lim inf n →∞ 1 λ T log P θ ,γ,x r T λ T ˆ γ T − γ ∈ G ≥ − inf u ∈G θ u 2 2 θ + 2γ 2 . In γ = 0 case, the deviation inequalities of quadratic functionals of the classical OU process are obtained in [14]. For the large deviations and the moderate deviations of ˆ θ T , we refer to [1], [9] and [11]. The proofs of Theorem 1.1 and Theorem 1.2 are based on the LSI with respect to L 2 -norm in the Wiener space and Herbst’s argument cf. [10], [12]. 2 Deviation inequalities In this section, we give some deviation inequalities for the estimators ˆ θ T and ˆ γ T by the logarithmic Sobolev inequality and the exponential martingale method. For deviation bounds for additive functionals of Markov processes, we refer to [3] and [18].

2.1 Moments

It is known that the solution of equation 1.1 has the following expression: X t =  x − γ θ ‹ e −θ t + γ θ + e −θ t Z t e θ s dW s . 2.1 From this expression, it is easily seen that for any t ≥ 0, µ t :=E θ ,γ,x X t =  x − γ θ ‹ e −θ t + γ θ , 2.2 σ 2 t :=Var θ ,γ,x X t = 1 2 θ 1 − e −2θ t 2.3 Deviation inequalities and MDP for estimators in OU model 213 and for any 0 ≤ s ≤ t, Cov θ ,γ,x X s , X t = 1 2 θ 1 − e −2θ s e −θ t−s . 2.4 Therefore E θ ,γ,x ˆ µ T = 1 T E θ ,γ,x Z T X t d t = 1 θ T  x − γ θ ‹ 1 − e −θ T + γ θ , 2.5 Var θ ,γ,x ˆ µ T = 1 T 2 E θ ,γ,x    Z T e −θ t Z t e θ s dW s d t 2    2.6 = 1 θ 2 T 2 T − 1 2 θ e −2θ T − 1 + 2 θ e −θ T − 1 and so for all T ≥ 1, Var θ ,γ,x ˆ µ T ≤ 1 2 θ 3 T 2θ + 1 2.7 and E θ ,γ,x ˆ σ 2 T = 1 2 θ + 1 4 θ 2 T 1 − e −2θ T −1 + 2θ  x − γ θ ‹ 2 − 1 θ 2 T 2 1 − e −θ T 2  x − γ θ ‹ 2 1 − e −θ T − 1 θ 2 T 2 T − 1 2 θ e −2θ T − 1 + 2 θ e −θ T − 1 which implies E θ ,γ,x ˆ σ 2 T − 1 2 θ ≤ 1 θ 2 T θ  x − γ θ ‹ 2 + 2 θ . 2.8 Lemma 2.1. For any 0 ≤ α ≤ θ 2 4, for all T ≥ 1, E θ ,γ,x exp α Z T X 2 t d t ∞, and there exist finite positive constants L 1 and L 2 such that for all 0 ≤ α ≤ θ 2 4 and T ≥ 1, E θ ,γ,x exp α Z T X 2 t d t ≤ L 1 e L 2 αT . Proof. For any 0 ≤ α ≤ θ 2 4, set κ = p θ 2 − 2α. Then by Girsanov theorem, we have d P θ ,γ,x d P κ,γ,x = exp − Z T θ − κX t d X t − Z T αX 2 t − γθ − κX t d t 214 Electronic Communications in Probability and so E θ ,γ,x exp α Z T X 2 t d t =E κ,γ,x d P θ ,γ,x d P κ,γ,x exp α Z T X 2 t d t =E κ,γ,x exp −θ + κ Z T X t d X t + γ Z T θ − κX t d t =E κ,γ,x exp −θ − κ 2 X 2 T − T + γ Z T θ − κX t d t ≤ exp θ − κT 2 E κ,γ,x exp γ Z T θ − κX t d t where the last inequality is due to θ ≥ κ. Now we have to estimate E κ,γ,x exp{γ R T θ − κX t d t }. Since under P κ,γ,x , ˆ µ T ∼ N 1 κT x − γ κ 1 − e −κT + γ κ , 1 κ 2 T 2 T − 1 2 κ e −2κT − 1 + 2 κ e −κT − 1 , we have E κ,γ,x exp γ Z T θ − κX t d t = exp γθ − κ κ  x − γ κ ‹ 1 − e −κT + γT ‹ · exp ¨ γ 2 θ − κ 2 2 κ 2 T − 1 2 κ e −2κT − 1 + 2 κ e −κT − 1 « . Noting θ p 2 ≤ κ ≤ θ , 0 ≤ θ − κ = 2αθ + κ ≤ 2αθ and θ − κ 2 ≤ αθ for all 0 ≤ α ≤ θ 2 4, we complete the proof of the lemma. ƒ

2.2 Logarithmic Sobolev inequality

Since the LSI with respect to the Cameron-Martin metric does not produce the concentration inequality of correct order in large time T for the functionals F X := 1 p T Z T gX s ds − E Z T gX s ds , in order to get the concentration inequality of correct order for the functionals F X , as pointed out by Djellout, Guillin and Wu [7] we should establish the LSI with respect to the L 2 -metric. Let us introduce the logarithmic Sobolev inequality on W with respect to the gradient in L 2 [0, T ], R [10]. Let µ be the Wiener measure on W = C[0, T ], R. A function f : W → R is said to be Deviation inequalities and MDP for estimators in OU model 215 differentiable with respect to the L 2 -norm, if it can be extend to L 2 [0, T ], R and for any w ∈ W , there exists a bounded linear operator D f w : g → D g f w on L 2 [0, T ], R such that lim kgk L2 →0 | f w + g − f w − D g f w | kgk L 2 = 0. If f : W → R is differentiable with respect to the L 2 -norm, then there exists a unique element ∇ f w = ∇ t f w, t ∈ [0, T ] in L 2 [0, T ], R such that D g f w = 〈∇ f w, g〉 L 2 , f or al l g ∈ L 2 [0, T ], R. Denote by C 1 b W L 2 the space of all bounded function f on W , differentiable with respect to the L 2 -norm, such that ∇ f is also continuous and bounded from W equipped with L 2 -norm to L 2 [0, T ], R. Applying Theorem 2.3 in [10] to the Ornstein-Uhlenbeck process with linear drift, we have Ent P θ ,γ,x f 2 ≤ 2 θ 2 E θ ,γ,x Z T |∇ t f | 2 d t , f ∈ C 1 b W L 2 2.9 where the entropy of f 2 is given by Ent P θ ,γ,x f 2 = E θ ,γ,x f 2 log f 2 − E θ ,γ,x f 2 log E θ ,γ,x f 2 . Lemma 2.2. For any |α| ≤ θ 2 4, E θ ,γ,x exp α Z T X 2 t d t − E θ ,γ,x Z T X 2 t d t ≤ E θ ,γ,x exp 4 α 2 θ 2 Z T X 2 t d t and E θ ,γ,x € exp ¦ αT € ˆ µ 2 T − E θ ,γ,x ˆ µ 2 T ЩР≤ E θ ,γ,x exp 4 α 2 θ 2 Z T X 2 t d t . Proof. We apply Theorem 2.7 in [12] to prove the conclusions of the lemma. Take A 1 = {α f ; |α| ≤ θ 2 4} and A 2 = {αh; |α| ≤ θ 2 4}, where f w = Z T w 2 t d t, hw = 1 T Z T w t d t 2 . Define Γ 1 g 1 = 4 θ 2 g 2 1 f , g 1 ∈ A 1 ; Γ 2 g 2 = 4 θ 2 g 2 2 h , g 2 ∈ A 2 . Then for any λ ∈ [−1, 1], g 1 ∈ A 1 and g 2 ∈ A 2 , λg 1 ∈ A 1 , λg 2 ∈ A 2 , Γ 1 λg 1 = λ 2 Γ 1 g 1 , Γ 2 λg 2 = λ 2 Γ 2 g 2 and by Lemma 2.1 E θ ,γ,x exp {λΓ 1 g 1 } ∞, E θ ,γ,x exp {λΓ 2 g 2 } ∞. Choose a sequence of real C ∞ -functions Φ n , n ≥ 1 with compact support such that lim n →∞ sup |x|≤M |Φ n x− e x | = 0 for all M ∈ 0, ∞. For any g 1 = α f ∈ A 1 and g 2 = αh ∈ A 2 , set F n w = Φ n g 1 w2 , H n w = Φ n g 2 w2 . 216 Electronic Communications in Probability Then for any g ∈ L 2 [0, T ], R, lim kgk L2 →0 |F n w + g − F n w − αΦ ′ n g 1 w2 〈w, g〉 L 2 | kgk L 2 = 0 and lim kgk L2 →0 |H n w + g − H n w − αΦ ′ n g 2 w2 1 T R T w t d t R T g t d t | kgk L 2 = 0. Therefore, F n , H n ∈ C 1 b W L 2 , ∇F n = αΦ ′ n g 1 w2 w, and ∇H n = α T Z T w t d tΦ ′ n g 2 w2 and so by 2.9, we have Ent P θ ,γ,x € F 2 n Š ≤ 2 θ 2 E θ ,γ,x Z T |αw t | 2 d t € Φ ′ n g 1 w2 Š 2 and Ent P θ ,γ,x € H 2 n Š ≤ 2 θ 2 E θ ,γ,x    1 T α Z T w t d t 2 € Φ ′ n g 2 w2 Š 2    . Letting n → ∞ and by Lemma 2.1, we get Ent P θ ,γ,x e g 1 ≤ 1 2 E θ ,γ,x Γ 1 g 1 e g 1 , Ent P θ ,γ,x e g 2 ≤ 1 2 E θ ,γ,x Γ 2 g 2 e g 2 , 2.10 and so the conclusions of the lemma hold by Theorem 2.7 in [12] and T ˆ µ 2 T ≤ R T X 2 t d t. ƒ

2.3 Deviation inequalities

Dokumen yang terkait

AN ALIS IS YU RID IS PUT USAN BE B AS DAL AM P E RKAR A TIND AK P IDA NA P E NY E RTA AN M E L AK U K A N P R AK T IK K E DO K T E RA N YA NG M E N G A K IB ATK AN M ATINYA P AS IE N ( PUT USA N N O MOR: 9 0/PID.B /2011/ PN.MD O)

0 82 16

ANALISIS FAKTOR YANGMEMPENGARUHI FERTILITAS PASANGAN USIA SUBUR DI DESA SEMBORO KECAMATAN SEMBORO KABUPATEN JEMBER TAHUN 2011

2 53 20

EFEKTIVITAS PENDIDIKAN KESEHATAN TENTANG PERTOLONGAN PERTAMA PADA KECELAKAAN (P3K) TERHADAP SIKAP MASYARAKAT DALAM PENANGANAN KORBAN KECELAKAAN LALU LINTAS (Studi Di Wilayah RT 05 RW 04 Kelurahan Sukun Kota Malang)

45 393 31

FAKTOR – FAKTOR YANG MEMPENGARUHI PENYERAPAN TENAGA KERJA INDUSTRI PENGOLAHAN BESAR DAN MENENGAH PADA TINGKAT KABUPATEN / KOTA DI JAWA TIMUR TAHUN 2006 - 2011

1 35 26

A DISCOURSE ANALYSIS ON “SPA: REGAIN BALANCE OF YOUR INNER AND OUTER BEAUTY” IN THE JAKARTA POST ON 4 MARCH 2011

9 161 13

Pengaruh kualitas aktiva produktif dan non performing financing terhadap return on asset perbankan syariah (Studi Pada 3 Bank Umum Syariah Tahun 2011 – 2014)

6 101 0

Pengaruh pemahaman fiqh muamalat mahasiswa terhadap keputusan membeli produk fashion palsu (study pada mahasiswa angkatan 2011 & 2012 prodi muamalat fakultas syariah dan hukum UIN Syarif Hidayatullah Jakarta)

0 22 0

Pendidikan Agama Islam Untuk Kelas 3 SD Kelas 3 Suyanto Suyoto 2011

4 108 178

ANALISIS NOTA KESEPAHAMAN ANTARA BANK INDONESIA, POLRI, DAN KEJAKSAAN REPUBLIK INDONESIA TAHUN 2011 SEBAGAI MEKANISME PERCEPATAN PENANGANAN TINDAK PIDANA PERBANKAN KHUSUSNYA BANK INDONESIA SEBAGAI PIHAK PELAPOR

1 17 40

KOORDINASI OTORITAS JASA KEUANGAN (OJK) DENGAN LEMBAGA PENJAMIN SIMPANAN (LPS) DAN BANK INDONESIA (BI) DALAM UPAYA PENANGANAN BANK BERMASALAH BERDASARKAN UNDANG-UNDANG RI NOMOR 21 TAHUN 2011 TENTANG OTORITAS JASA KEUANGAN

3 32 52