Introduction Main results getdoc654d. 143KB Jun 04 2011 12:04:27 AM

Elect. Comm. in Probab. 14 2009, 210–220 ELECTRONIC COMMUNICATIONS in PROBABILITY DEVIATION INEQUALITIES AND MODERATE DEVIATIONS FOR ESTIMATORS OF PARAMETERS IN AN ORNSTEIN-UHLENBECK PROCESS WITH LINEAR DRIFT FUQING GAO 1 School of Mathematics and Statistics, Wuhan University, Wuhan 430072, P.R.China email: fqgaowhu.edu.cn HUI JIANG School of Science, Nanjing University of Aeronautics and Astronautics, Nanjing 210016, P.R.China email: huijiangnuaa.edu.cn Submitted December 29, 2008, accepted in final form April 21, 2009 AMS 2000 Subject classification: 60F12, 62F12, 62N02 Keywords: Deviation inequality, logarithmic Sobolev inequality, moderate deviations, Ornstein- Uhlenbeck process Abstract Some deviation inequalities and moderate deviation principles for the maximum likelihood esti- mators of parameters in an Ornstein-Uhlenbeck process with linear drift are established by the logarithmic Sobolev inequality and the exponential martingale method. 1 Introduction and main results

1.1 Introduction

We consider the following Ornstein-Uhlenbeck process d X t = −θ X t + γd t + dW t , X = x 1.1 where W is a standard Brownian motion and θ , γ are unknown parameters with θ ∈ 0, +∞. We denote by P θ ,γ,x the distribution of the solution of 1.1. It is known that the maximum likelihood estimators MLE of the parameters θ and γ are cf. 1 RESEARCH SUPPORTED BY THE NATIONAL NATURAL SCIENCE FOUNDATION OF CHINA 10871153 210 Deviation inequalities and MDP for estimators in OU model 211 [15] ˆ θ T = −T R T X t d X t + X T − x R T X t d t T R T X 2 t d t − R T X t d t 2 1.2 =θ + W T ˆ µ T − R T X t dW t T ˆ σ 2 T , ˆ γ T = − R T X t d t R T X t d X t + X T − x R T X 2 t d t T R T X 2 t d t − R T X t d t 2 1.3 =γ + W T T + ˆ µ T W T ˆ µ T − R T X t dW t T ˆ σ 2 T , where ˆ µ T = 1 T Z T X t d t, ˆ σ 2 T = 1 T Z T X 2 t d t − ˆ µ 2 T . 1.4 It is known that ˆ θ T and ˆ γ T are consistent estimators of θ and γ and have asymptotic normality cf. [15]. For γ ≡ 0 case, Florens-Landais and Pham[9] calculated the Laplace functional of R T X t d X t , R T X 2 t d t by Girsanov’s formula and obtained large deviations for ˆ θ T by Gärtner-Ellis theorem. Bercu and Rouault [1] presented a sharp large deviation for ˆ θ T . Lezaud [14] obtained the deviation inequality of quadratic functional of the classical OU processes. We refer to [8] and [11] for the moderate deviations of some non-linear functionals of moving average processes and diffusion processes. In this paper we use the logarithmic Sobolev inequality LSI to study the deviation inequalities and the moderate deviations of ˆ θ T and ˆ γ T for γ 6= 0 case.

1.2 Main results

Throughout this paper, let λ T , T ≥ 1 be a positive sequence satisfying λ T → ∞, λ T p T → 0. 1.5 Theorem 1.1. There exist finite positive constants C , C 1 , C 2 and C 3 such that for all r 0 and all T ≥ 1, P θ ,γ,x € | ˆ θ T − θ | ≥ r Š ≤C exp ¦ −C 1 r T E θ ,γ,x ˆ σ 2 T min 1, C 2 r © + C exp ¦ −C 3 T E θ ,γ,x ˆ σ 2 T © and P θ ,γ,x |ˆγ T − γ| ≥ r ≤C exp ¦ −C 1 r T E θ ,γ,x ˆ σ 2 T min 1, C 2 r © + C exp ¦ −C 3 T E θ ,γ,x ˆ σ 2 T © . Remark 1.1. In this theorem and the remainder of the paper, all the constants involved depend on θ , γ and the initial point x. 212 Electronic Communications in Probability Theorem 1.2. 1. P θ ,γ,x q T λ T ˆ θ T − θ ∈ · , T ≥ 1 satisfies the large deviation principle with speed λ T and rate function I 1 u = u 2 4 θ , that is, for any closed set F in R, lim sup n →∞ 1 λ T log P θ ,γ,x r T λ T ˆ θ T − θ ∈ F ≤ − inf u ∈F u 2 4 θ and open set G in R, lim inf n →∞ 1 λ T log P θ ,γ,x r T λ T ˆ θ T − θ ∈ G ≥ − inf u ∈G u 2 4 θ . 2. P θ ,γ,x q T λ T ˆ γ T − γ ∈ · , T ≥ 1 satisfies the large deviation principle with speed λ T and rate function I 2 u = θ u 2 2 θ +2γ 2 , that is, for any closed set F in R, lim sup n →∞ 1 λ T log P θ ,γ,x r T λ T ˆ γ T − γ ∈ F ≤ − inf u ∈F θ u 2 2 θ + 2γ 2 and open set G in R, lim inf n →∞ 1 λ T log P θ ,γ,x r T λ T ˆ γ T − γ ∈ G ≥ − inf u ∈G θ u 2 2 θ + 2γ 2 . In γ = 0 case, the deviation inequalities of quadratic functionals of the classical OU process are obtained in [14]. For the large deviations and the moderate deviations of ˆ θ T , we refer to [1], [9] and [11]. The proofs of Theorem 1.1 and Theorem 1.2 are based on the LSI with respect to L 2 -norm in the Wiener space and Herbst’s argument cf. [10], [12]. 2 Deviation inequalities In this section, we give some deviation inequalities for the estimators ˆ θ T and ˆ γ T by the logarithmic Sobolev inequality and the exponential martingale method. For deviation bounds for additive functionals of Markov processes, we refer to [3] and [18].

2.1 Moments

Dokumen yang terkait

AN ALIS IS YU RID IS PUT USAN BE B AS DAL AM P E RKAR A TIND AK P IDA NA P E NY E RTA AN M E L AK U K A N P R AK T IK K E DO K T E RA N YA NG M E N G A K IB ATK AN M ATINYA P AS IE N ( PUT USA N N O MOR: 9 0/PID.B /2011/ PN.MD O)

0 82 16

ANALISIS FAKTOR YANGMEMPENGARUHI FERTILITAS PASANGAN USIA SUBUR DI DESA SEMBORO KECAMATAN SEMBORO KABUPATEN JEMBER TAHUN 2011

2 53 20

EFEKTIVITAS PENDIDIKAN KESEHATAN TENTANG PERTOLONGAN PERTAMA PADA KECELAKAAN (P3K) TERHADAP SIKAP MASYARAKAT DALAM PENANGANAN KORBAN KECELAKAAN LALU LINTAS (Studi Di Wilayah RT 05 RW 04 Kelurahan Sukun Kota Malang)

45 393 31

FAKTOR – FAKTOR YANG MEMPENGARUHI PENYERAPAN TENAGA KERJA INDUSTRI PENGOLAHAN BESAR DAN MENENGAH PADA TINGKAT KABUPATEN / KOTA DI JAWA TIMUR TAHUN 2006 - 2011

1 35 26

A DISCOURSE ANALYSIS ON “SPA: REGAIN BALANCE OF YOUR INNER AND OUTER BEAUTY” IN THE JAKARTA POST ON 4 MARCH 2011

9 161 13

Pengaruh kualitas aktiva produktif dan non performing financing terhadap return on asset perbankan syariah (Studi Pada 3 Bank Umum Syariah Tahun 2011 – 2014)

6 101 0

Pengaruh pemahaman fiqh muamalat mahasiswa terhadap keputusan membeli produk fashion palsu (study pada mahasiswa angkatan 2011 & 2012 prodi muamalat fakultas syariah dan hukum UIN Syarif Hidayatullah Jakarta)

0 22 0

Pendidikan Agama Islam Untuk Kelas 3 SD Kelas 3 Suyanto Suyoto 2011

4 108 178

ANALISIS NOTA KESEPAHAMAN ANTARA BANK INDONESIA, POLRI, DAN KEJAKSAAN REPUBLIK INDONESIA TAHUN 2011 SEBAGAI MEKANISME PERCEPATAN PENANGANAN TINDAK PIDANA PERBANKAN KHUSUSNYA BANK INDONESIA SEBAGAI PIHAK PELAPOR

1 17 40

KOORDINASI OTORITAS JASA KEUANGAN (OJK) DENGAN LEMBAGA PENJAMIN SIMPANAN (LPS) DAN BANK INDONESIA (BI) DALAM UPAYA PENANGANAN BANK BERMASALAH BERDASARKAN UNDANG-UNDANG RI NOMOR 21 TAHUN 2011 TENTANG OTORITAS JASA KEUANGAN

3 32 52