getdoc654d. 143KB Jun 04 2011 12:04:27 AM

(1)

ELECTRONIC COMMUNICATIONS in PROBABILITY

DEVIATION INEQUALITIES AND MODERATE DEVIATIONS FOR

ESTIMATORS OF PARAMETERS IN AN ORNSTEIN-UHLENBECK

PROCESS WITH LINEAR DRIFT

FUQING GAO1

School of Mathematics and Statistics, Wuhan University, Wuhan 430072, P.R.China email: [email protected]

HUI JIANG

School of Science, Nanjing University of Aeronautics and Astronautics, Nanjing 210016, P.R.China email: [email protected]

SubmittedDecember 29, 2008, accepted in final formApril 21, 2009 AMS 2000 Subject classification: 60F12, 62F12, 62N02

Keywords: Deviation inequality, logarithmic Sobolev inequality, moderate deviations, Ornstein-Uhlenbeck process

Abstract

Some deviation inequalities and moderate deviation principles for the maximum likelihood esti-mators of parameters in an Ornstein-Uhlenbeck process with linear drift are established by the logarithmic Sobolev inequality and the exponential martingale method.

1

Introduction and main results

1.1

Introduction

We consider the following Ornstein-Uhlenbeck process

d Xt= (θXt+γ)d t+dWt, X0=x (1.1) whereW is a standard Brownian motion andθ,γare unknown parameters withθ(0,+). We denote by,γ,xthe distribution of the solution of (1.1).

It is known that the maximum likelihood estimators (MLE) of the parameters θ andγare (cf.

1RESEARCH SUPPORTED BY THE NATIONAL NATURAL SCIENCE FOUNDATION OF CHINA (10871153)


(2)

[15])

ˆ

θT=−T

RT

0 Xtd Xt+ (XTx)

RT

0 Xtd t

TR0TX2

td t

RT

0 Xtd t

2 (1.2)

=θ+WTµˆT

RT

0 XtdWt

ˆ2

T

,

ˆ

γT=−

RT

0 Xtd t

RT

0 Xtd Xt+ (XTx)

RT

0 X 2

td t TR0TX2

td t

RT

0 Xtd t

2 (1.3)

=γ+WT

T +

ˆ

µT(WTµˆTRT

0 XtdWt)

ˆ2

T

, where

ˆ

µT= 1

T

Z T

0

Xtd t, σˆ2T= 1

T

ZT

0

X2td tµˆ2T. (1.4) It is known thatθˆT andγˆT are consistent estimators ofθ andγand have asymptotic normality (cf.[15]).

Forγ0 case, Florens-Landais and Pham([9]) calculated the Laplace functional of(RT 0 Xtd Xt,

RT

0 X 2

td t)by Girsanov’s formula and obtained large deviations forθˆT by Gärtner-Ellis theorem. Bercu and Rouault ([1]) presented a sharp large deviation for θˆT. Lezaud ([14]) obtained the deviation inequality of quadratic functional of the classical OU processes. We refer to [8] and [11]for the moderate deviations of some non-linear functionals of moving average processes and diffusion processes. In this paper we use the logarithmic Sobolev inequality (LSI) to study the deviation inequalities and the moderate deviations ofθˆT andγˆTforγ6=0 case.

1.2

Main results

Throughout this paper, letλT,T≥1 be a positive sequence satisfying λT→ ∞, pλT

T →0. (1.5)

Theorem 1.1. There exist finite positive constants C0,C1,C2and C3such that for all r >0and all

T≥1,

,γ,x

€

|θˆTθ| ≥r

Š

C0exp

¦

C1r T Eθ,γ,x( ˆσ2T)min

1,C2r

©

+C0exp¦C3T Eθ,γ,x( ˆσ2T

and

,γ,x |γˆTγ| ≥r

C0exp

¦

C1r T Eθ,γ,x( ˆσ2T)min

1,C2r

©

+C0exp¦C3T Eθ,γ,x( ˆσ2T)

©

.

Remark 1.1. In this theorem and the remainder of the paper, all the constants involved depend on θ,γand the initial point x.


(3)

Theorem 1.2. (1).

,γ,x

q

T

λT( ˆθTθ)∈ ·

,T1

satisfies the large deviation principle with speedλTand rate function I1(u) = u

2

4θ, that is, for any closed set F inR,

lim sup n→∞

1

λT log,γ,x

r

T

λT( ˆθTθ)∈F

!

≤ −inf uF

u2 4θ and open set G inR,

lim inf n→∞

1

λTlog,γ,x

r

T

λT( ˆθTθ)∈G

!

≥ −inf uG

u2

4θ. (2).

Pθ,γ,x

q

T

λT

γTγ)∈ ·

,T1

satisfies the large deviation principle with speedλT and rate function I2(u) = θu

2

2(θ+2γ2), that is, for any closed set F inR, lim sup

n→∞

1

λTlog,γ,x

r

T

λTγTγ)∈F

!

≤ −inf uF

θu2 2(θ+2γ2)

and open set G inR,

lim inf n→∞

1

λTlog,γ,x

r

T

λTγTγ)∈G

!

≥ −inf uG

θu2

2(θ+2γ2).

Inγ=0 case, the deviation inequalities of quadratic functionals of the classical OU process are obtained in [14]. For the large deviations and the moderate deviations ofθˆT, we refer to[1], [9]and[11]. The proofs of Theorem 1.1 and Theorem 1.2 are based on the LSI with respect to L2-norm in the Wiener space and Herbst’s argument (cf.[10],[12]).

2

Deviation inequalities

In this section, we give some deviation inequalities for the estimatorsθˆTandγˆTby the logarithmic Sobolev inequality and the exponential martingale method. For deviation bounds for additive functionals of Markov processes, we refer to[3]and[18].

2.1

Moments

It is known that the solution of equation (1.1) has the following expression: Xt=



xγ

θ

‹

eθt+ γ

θ +e

θt

Z t

0

eθsdWs. (2.1)

From this expression, it is easily seen that for anyt≥0, µt:=,γ,x(Xt) =



xγ

θ

‹

eθt+ γ

θ, (2.2)

σ2

t :=Varθ,γ,x(Xt) = 1 2θ(1−e


(4)

and for any 0st,

Covθ,γ,x(Xs,Xt) = 1 2θ(1−e

−2θs)eθ(ts). (2.4)

Therefore

,γ,x( ˆµT) = 1 TEθ,γ,x

ZT

0

Xtd t

!

= 1

θT



x γ θ

‹

(1eθT) +γ

θ, (2.5)

Varθ,γ,x µˆT

= 1

T2,γ,x

 

ZT

0

eθt

Zt

0

eθsdWsd t

!2

 (2.6)

= 1

θ2T2

T 1 2θ(e

−2θT

−1) +2

θ(e

θT

−1)

and so for allT≥1,

Varθ,γ,x µˆT

13T (2θ+1) (2.7)

and

Eθ,γ,x( ˆσ2T) = 1

2θ + 1

4θ2T(1−e− 2θT)

−1+2θ



xγ θ

‹2

− 1

θ2T2(1−e

θT)xγ

θ

‹2

(1−eθT)

− 1

θ2T2

T 1 2θ(e

−2θT1) +2 θ(e

θT1)

which implies

,γ,x

( ˆσ2T) 1

1 θ2T

θ



xγ

θ

‹2 +2

θ

. (2.8)

Lemma 2.1. For any0αθ2/4, for all T 1,

,γ,x exp α

Z T

0

Xt2d t

!!

<,

and there exist finite positive constants L1and L2such that for all0≤αθ2/4and T≥1,

,γ,x exp α

ZT

0

X2td t

!!

L1eL2αT.

Proof. For any 0≤αθ2/4, setκ=pθ22α. Then by Girsanov theorem, we have

d Pθ,γ,x d Pκ,γ,x

=exp

(

Z T

0

(θκ)Xtd Xt

ZT

0

(αX2t γ(θκ)Xt)d t


(5)

and so

,γ,x exp α

ZT

0

Xt2d t

!!

=,γ,x

d Pθ,γ,x d Pκ,γ,x

exp

(

α

ZT

0

X2td t

)!

=,γ,x exp

(

(θ+κ)

ZT

0

Xtd Xt+γ

ZT

0

(θκ)Xtd t

)!

=,γ,x exp

(

−(θκ)

2 (X

2

TT) +γ

Z T

0

(θκ)Xtd t

)!

≤exp

(θκ)T 2

,γ,x exp

(

γ

Z T

0

(θκ)Xtd t

)!

where the last inequality is due toθκ. Now we have to estimateEκ,γ,x(exp{γ

RT

0(θκ)Xtd t}).

Since under,γ,x,

ˆ

µTN

1 κT(x

γ κ)(1−e

κT) +γ κ,

1 κ2T2

T 1 2κ(e

−2κT

−1) +2

κ(e

κT

−1)

, we have

,γ,x exp

(

γ

Z T

0

(θκ)Xtd t

)!

=exp

γ(θκ)

κ



xγ

κ

‹

(1−eκT) +γT

‹

·exp

¨

γ2(θκ)2

2κ2

T− 1

2κ(e

−2κT1) +2 κ(e

κT1)

«

.

Notingθ /p2κθ, 0θκ=2α/(θ+κ)2α/θand(θκ)2αθ for all 0αθ2/4,

we complete the proof of the lemma.

ƒ

2.2

Logarithmic Sobolev inequality

Since the LSI with respect to the Cameron-Martin metric does not produce the concentration inequality of correct order in large timeT for the functionals

F(X):=p1

T

Z T

0

g(Xs)dsE

ZT

0

g(Xs)ds

!!

,

in order to get the concentration inequality of correct order for the functionals F(X), as pointed out by Djellout, Guillin and Wu ([7]) we should establish the LSI with respect to theL2-metric.

Let us introduce the logarithmic Sobolev inequality onWwith respect to the gradient inL2([0,T],R)


(6)

differentiable with respect to theL2-norm, if it can be extend toL2([0,T],R)and for anywW,

there exists a bounded linear operatorD f(w):gDgf(w)onL2([0,T],R)such that

lim

kgkL2→0

|f(w+g)f(w)Dgf(w)|

kgkL2 =0.

If f :W →R is differentiable with respect to the L2-norm, then there exists a unique element

f(w) = (tf(w),t∈[0,T])inL2([0,T],R)such that

Dgf(w) =〈∇f(w),gL2, f or al l gL2([0,T],R).

Denote by Cb1(W/L2)the space of all bounded function f on W, differentiable with respect to

the L2-norm, such that f is also continuous and bounded fromW equipped with L2-norm to L2([0,T],R). Applying Theorem 2.3 in[10]to the Ornstein-Uhlenbeck process with linear drift,

we have

EntPθ,γ,x(f2) 2

θ2,γ,x

Z T

0

|∇tf|2d t

!

, f Cb1(W/L2) (2.9) where the entropy of f2is given by

EntPθ,γ,x(f

2) =E

θ,γ,x(f2logf2)−,γ,x(f2)log,γ,x(f2). Lemma 2.2. For any|α| ≤θ2/4,

,γ,x exp

(

α

ZT

0

X2td t,γ,x

Z T

0

X2td t

!!)!

,γ,x exp

(

4α2

θ2

Z T

0

X2td t

)!

and

,γ,x

€

exp¦αT€µˆ2T,γ,x( ˆµ2T)

Š©Š

,γ,x exp

(

4α2

θ2

ZT

0

Xt2d t

)!

.

Proof. We apply Theorem 2.7 in [12] to prove the conclusions of the lemma. Take A1 =

{αf; |α| ≤θ2/4}andA

2={αh; |α| ≤θ2/4}, where

f(w) =

Z T

0

w2td t, h(w) = 1

T

ZT

0

wtd t

!2

. Define

Γ1(g1) =

4 θ2

g2 1

f , g1∈ A1; Γ2(g2) = 4 θ2

g2 2

h , g2∈ A2.

Then for anyλ [1, 1], g1 ∈ A1 and g2 ∈ A2, λg1 ∈ A1, λg2 ∈ A2, Γ1(λg1) = λ2Γ 1(g1), Γ2(λg2) =λ2Γ2(g2)and by Lemma 2.1

,γ,x exp{λΓ1(g1)}

<, ,γ,x exp{λΓ2(g2)}

<.

Choose a sequence of realC∞-functionsΦn,n≥1 with compact support such that limn→∞sup|x|≤Mn(x)− ex|=0 for allM∈(0,). For anyg1=αf ∈ A1andg2=αh∈ A2, set

Fn(w) = Φn g1(w)/2

, Hn(w) = Φn g2(w)/2


(7)

Then for any gL2([0,T],R),

lim

kgkL2→0

|Fn(w+g)Fn(w)αΦ′n g1(w)/2

w,gL2|

kgkL2

=0 and

lim

kgkL2→0

|Hn(w+g)Hn(w)αΦ′n g2(w)/21

T

RT

0 wtd t

RT

0 gtd t|

kgkL2

=0. Therefore,Fn,HnC1b(W/L

2),F

n=αΦ′n g1(w)/2

w, and

Hn= α T

ZT

0

wtd tΦ′n g2(w)/2

and so by (2.9), we have

EntPθ,γ,x

€

Fn 2 θ2,γ,x

ZT

0

|αwt|2d t

€

Φ′n g1(w)/2

Š2

!

and

EntPθ,γ,x€Hn 2 θ2,γ,x

 

1

T α

Z T

0

wtd t

!2

€

Φ′n g2(w)/2Š2 

.

Lettingn→ ∞and by Lemma 2.1, we get EntPθ,γ,x(e

g1)

≤ 12,γ,x Γ1(g1)eg1

, EntPθ,γ,x(e g2)

≤12,γ,x Γ2(g2)eg2

, (2.10)

and so the conclusions of the lemma hold by Theorem 2.7 in[12]andˆ2

T

RT

0 X 2

td t.

ƒ

2.3

Deviation inequalities

SinceXTN

€

µT,σ2T

Š

, and under,γ,x

ˆ

µTN

1 θT(x

γ θ)(1−e

θT) +γ θ,

1 θ2T2

T 1 2θ(e

−2θT

−1) +2

θ(e

θT

−1)

, it is easily to get from Chebyshev inequality, for anyr>0,

Pθ,γ,x€XTEθ,γ,x(XT)

r

Š

≤2 exp¦θr2©, (2.11)

,γ,x

€ µˆ

T,γ,x( ˆµT)

r

Š

≤2 exp

¨

θ

3Tr2

2θ+1

«

(2.12) where we used (2.7).


(8)

Lemma 2.3. There exist finite positive constants C0,C1,C2such that for all r>0and all T1, ,γ,x

Z T

0

X2td t,γ,x

ZT

0

X2td t

!

r T

!

C0exp

C1r Tmin

1,C2r

and

,γ,x

€ µˆ2

T,γ,x( ˆµ2T)

r

Š

C0exp

C1r Tmin

1,C2r

.

In particular, there exist finite positive constants C0,C1,C2such that for all r>0and all T1, ,γ,x

€

|σˆ2T,γ,x( ˆσ2T)| ≥r

Š

C0exp

C1r Tmin

1,C2r

.

Proof. We only prove the first inequality. By Lemma 2.2 and Lemma 2.1, there exist finite positive constantsL1andL2such that for allT 1, for any|α| ≤θ2/4,

Eθ,γ,x exp

(

α

ZT

0

X2td tEθ,γ,x

Z T

0

Xt2d t

!!)!

L1eL2α2T .

Therefore, by Chebyshev inequality, for anyr>0,T≥1 and|α| ≤θ2/4,

Pθ,γ,x

Z T

0

Xt2d tEθ,γ,x(

ZT

0

Xt2d t)r T

!

L1e−(αrL2α2)T and

,γ,x

Z T

0

X2td t,γ,x(

Z T

0

X2td t)≤ −r T

!

L1e−(αrL2α2)T. Now, by

sup

|α|≤θ2/4{

αrL2α2} ≥θ

2r

8 min

1, 2r L2θ2

, we obtain the first inequality of the lemma from the above estimates.

ƒ

Lemma 2.4. There exist finite positive constants C0,C1and C2such that for all r>0and all T1, ,γ,x

‚

WT



ˆ

µTγ θ

‹

r T

Œ

C0exp

C1r Tmin

1,C2r

. Proof. Since for anyr>0 andT≥1,

¨

WT



ˆ

µT γ θ

‹

r T

«

⊂¦W

T( ˆµT,γ,x( ˆµT))

r T/2 ©

¨

WT



,γ,x( ˆµT)− γ θ

‹

r T/2

«

⊂¦|WT| ≥

p

r T/2©¦( ˆµTEθ,γ,x( ˆµT))

≥pr

©

( WT

θr T 2|€xθγŠ|

)


(9)

by (2.12) andWTN(0,T), we get ,γ,x



WT( ˆµT

γ θ)

r T

‹

≤2 exp

Tr

8

+2 exp

¨

θ

3Tr

2θ+1

«

+2 exp

θ

2r2T

xθγŠ2

.

ƒ

Lemma 2.5. For eachβ R fixed, there exist finite positive constants C0,C1,C2 such that for all

r>0and all T≥1, ,γ,x

Z T

0

Xtβ

dWt

r T

!

C0exp

C1r Tmin

1,C2r

. Proof. It is known that forαR,

MT(α)=exp

(

α

Z T

0

Xtβ

dWtα2

2

ZT

0

Xtβ

2

d t

)

, T≥0

isFT-martingale, whereFT:=σ(Wt,tT). Therefore, by Hölder inequality, we can get that for anyε(0, 1],

,γ,x exp

(

α

ZT

0

Xtβ

dWt

)!

,γ,x exp

(

(1+ε)2α2

Z T

0

Xtβ

2

d t

)!! ε

1+ε

,γ,x

MT((1+ε)α)

1+1ε

= Eθ,γ,x exp

(

(1+ε)2α2 2ε

Z T

0

Xtβ2

d t

)!! ε

1+ε

.

In particular, takeε=1, then by Lemma 2.1, there exists finite positive constantsL1=L1(θ,β,γ,x)

andL2=L2(θ,β,γ,x)such that for allT ≥1, for anyα2≤θ2/16, by Cauchy-Schwartz inequality,

,γ,x exp

(

α

Z T

0

Xtβ

dWt

)!

,γ,x exp

(

2α2

ZT

0

(Xtβ)2d t

)!!1

2

,γ,x exp

(

4α2

ZT

0

X2td t

)!!1

4

,γ,x exp

(

4α2

ZT

0

(2βXt+β2)d t

)!!1

4

L1eL2α

2T .

Therefore, by Chebyshev inequality, the conclusion of the lemma holds.


(10)

Proof of Theorem 1.1

We only show the first inequality. The second one is similar. By

ˆ

θTθ=

WT€µˆTγ

θ

Š

−R0T€Xt γ

θ

Š

dWt ˆ2

T for anyr>0 andT≥1,

Pθ,γ,x€|θˆTθ| ≥rŠ

,γ,x

€ σˆ2

T,γ,x( ˆσ2T)

Eθ,γ,x( ˆσ2

T)/2

Š

+Pθ,γ,x

WT  ˆ

µT γ θ ‹ − ZT 0 

Xt γ θ ‹ dWt

Eθ,γ,x( ˆσ2T)r T/2

!

Therefore, by Lemmas 2.3, 2.4 and 2.5, we obtain the first inequality of the theorem.

ƒ

3

Moderate deviations

In this section, we show Theorem 1.2. By (1.2) and (1.3), we have the following estimates

( ˆθTθ) +2θ

T

ZT

0



Xtγ θ ‹ dWt (3.1)

≤|WT

€

ˆ

µTγ

θ

Š

|

ˆ2

T

+|

σˆ2T1|

RT 0 €

Xt

γ θ Š dWt

ˆ2

T and for

γTγ)WT

T + 2γ T Z T 0 

Xtγ θ ‹ dWt (3.2)

≤|µˆT||WT

€

ˆ

µTγ

θ

Š

|

ˆ2

T

+|

σˆ2

TµˆT|

RT 0 €

Xtγ

θ Š dWt

ˆ2

T

. Lemma 3.1. (1). For any r>0,

lim sup T→∞

1

λTlog,γ,x

 µˆT

γ θ W T ≥ p

Tr

‹

=−∞,

lim sup T→∞

1

λTlog,γ,x

µˆT

γ θ ZT 0 

Xtγ θ ‹ dWt

≥pTr

! =−∞ and lim sup T→∞ 1 λT

logPθ,γ,x

ˆ

σ2T 1 2θ Z T 0 

Xt γ θ ‹ dWt

≥pTr

!


(11)

(2). For anyδ >0, lim sup

T→∞

1

λT log,γ,x

( ˆθTθ)

T

Z T

0



Xtγ θ ‹ dWtδ r λT T ! =−∞ and lim sup T→∞ 1

λTlog,γ,x

γTγ)− WT T − 2γ T ZT 0 

Xtγ θ ‹ dWtδ r λT T ! =−∞. Proof. (1). We only give the proof of the third assertion in (1). The rest is similar. For anyL>0,

( ˆ

σ2T 1 2θ Z T 0 

Xt γ θ ‹ dWt

≥pTr

) ⊂ ¨ ˆ

σ2T 1 2θ ≥ r L « ∪    1 p

T

Z T 0 

Xtγ θ ‹ dWtL    .

By Lemma 2.3, and Lemma 2.5, we have lim sup

T→∞

1

λTlog,γ,x

‚ ˆ σ2 T− 1 2θ ≥ r L Œ =−∞ and lim sup T→∞ 1

λT log,γ,x

  1 p T Z T 0 

Xtγ θ ‹ dWtL

≤ −L2C1C2.

Hence,

lim sup T→∞

1

λTlog,γ,x

ˆ σ2 T− 1 2θ Z T 0 

Xtγ θ ‹ dWt

≥pTr

!

≤ −L2C1C2.

LettingL→ ∞, we obtain the third conclusion. (2). It follows from (3.1) and (3.2) that

( ˆθTθ)

T

Z T

0



Xtγ θ ‹ dWtδ r λT T ! ⊂   

|WT



ˆ

µTγ θ

‹

| ≥δσˆ2T

p

T 2    ∪   

|2θσˆ2T1|

ZT 0 

Xt γ θ ‹ dWt

δσˆ2T

p

T 2    ⊂   

|WT



ˆ

µTγ θ

‹

| ≥δEθ,γ,x( ˆσ2T)

p

T 4

∪¦|σˆ2T,γ,x( ˆσ2T)| ≥,γ,x( ˆσ2T)/2

©

|2θσˆ2T1|

Z T 0 

Xtγ θ ‹ dWt

δEθ,γ,x( ˆσ2T)

p

T 4


(12)

and

γTγ)− 2γ

T

ZT

0



Xtγ θ ‹ dWtδ r λT T ! ⊂   

|µˆT||WT



ˆ

µTγ θ

‹

| ≥δσˆ2T

p

T 2    ∪   

|2γσˆ2TµˆT|

Z T 0 

Xtγ θ ‹ dWt

δσˆ2T

p

T 2    ⊂ § µˆT

γ θγ 2θ ª

∪¦|σˆ2TEθ,γ,x( ˆσ2T)| ≥Eθ,γ,x( ˆσ2T)/2©

3γ 2θ|WT



ˆ

µTγ θ

‹

| ≥δEθ,γ,x( ˆσ2T)

p T 4    ∪     2γσˆ

2 Tγ θ + µˆT

γ θ ‹ Z T 0 

Xtγ θ ‹ dWt

δEθ,γ,x( ˆσ2

T)

p

T 4

.

Therefore, by Lemmas 2.3 and (1), we get the conclusions.

ƒ

Lemma 3.2. For eachβ,κ R fixed,

§

,γ,x



κ

p

TλT

RT

0 Xtβ

dWt∈ ·

‹

,T ≥1

ª

satisfies the LDP with speedλTand rate function J(u) = θ2u2

κ2(θ+2(γθ β)2). Proof. By (2.12) and Lemma 2.3, we can get for anyδ >0,

lim T→∞

1

T log,γ,x

1 T Z T 0

Xtβ2

d t

1 2θ +

1

θ2(γθ β) 2 ≥δ !

<0. (3.3) Therefore, Proposition 1 in[4]yields the conclusion of the lemma.

ƒ

Proof of Theorem 1.2

By Lemma 3.1,{,γ,x(

q

T

λT( ˆθTθ)∈ ·),T ≥1}and{,γ,x(

q

T

λTγTγ)∈ ·),T ≥1}are expo-nential equivalent to

(

,γ,x

r T λTT ZT 0 

Xtγ θ

‹

dWt∈ ·

!

,T ≥1

)

and

(

,γ,x

r T λT WT T + 2γ T Z T 0 

Xtγ θ ‹ dWt ! ∈ · !

,T1

)

, respectively. Noting forγ6= 0, WT

T + 2γ T RT 0 €

Xt

γ θ

Š

dWt = 2

γ

T

RT

0

Xt

γ θ+

1 2γ

dWt, Theorem 1.2 follows from Lemma 3.2.


(13)

ƒ

AcknowledgmentsThe authors are grateful to referees for their comments and suggestions.

References

[1] B. Bercu, A. Rouault. Sharp large deviations for the Ornstein-Uhlenbeck process.Theory of Prob. and its Appl., 46(2002), 1-19. MR1968706

[2] S. G. Bobkov, F. Götze. Exponential Integrability and Transportation Cost Related to Loga-rithmic Sobolev Inequalities.Journal of Functional Analysis, 163(1999), 1-28. MR1682772 [3] P. Cattiaux, A. Guillin. Deviation bounds for additive functionals of Markov process.ESAIM:

Probability and Statistics. 12(2008), 12-29. MR2367991

[4] A. Dembo. Moderate Deviations for Martingales with Bounded Jumps.Electronic Commu-nications in Probability, 1 (1996),11-17. MR1386290

[5] A. Dembo, D. Zeitouni.Large Deviations Techniques and Applications, Springer-Verlag, 1998. MR1619036

[6] J. D. Deuschel, D. W. Stroock.Large Deviations, New York, 1989. MR0997938

[7] H. Djellout, A. Guillin, L. M. Wu. Transportation cost-information inequalities and appli-cations to random dynamical system and diffusions.Ann. Probab., 32(2004), 2702-2732. MR2078555

[8] H. Djellout, A. Guillin, L. M. Wu. Moderate deviations for non-linear functionals and em-pirical spectral density of moving average processes.Ann. Inst. H. Poincar´e Probab. Statist., 42(2006), 393-416. MR2242954

[9] D. Florens-Landais, H. Pham, Large deviations in estimate of an Ornstein-Uhlenbeck model. Journal of Applied Probability, 36(1999), 60-77. MR1699608

[10] M. Gourcy, L. M. Wu, Logarithmic Sobolev inequalities of diffusions for the L2 metric. Potential Analysis, 25(2006), 77-102. MR2238937

[11] A. Guillin, R. Liptser, Examples of moderate deviation principles for diffusion processes. Discrete and continuous dynamical systems-series B, 6(2006), 803-828. MR2223909 [12] M. Ledoux, Concentration of Measure and Logarithmic Sobolev Inequalities. S´eminaire de

probabilit´es XXXIII, Lecture Notes in Mathematics, 1709(1999), 120-216. MR1767995 [13] M. Ledoux, The Concentration of Measure Phenomenon.Mathematical Surveys and

Mono-graphs 89, American Mathematical Society, 2001. MR1849347

[14] P. Lezaud, Chernoff and Berry-Essen’s inequalities for Markov processes.ESAIMS: Probabil-ity and Statistics, 5(2001), 183-201. MR1875670

[15] Yury A. Kutoyants, Statistical Inference for Ergodic Diffusion Processes. Springer Series in Statistics, London, 2004, MR2144185


(14)

[16] B. L. S. Prakasa Rao, Statistical Inference for Diffusion Type Processes. Oxford University Presss, New York,1999.

[17] D. Revuz, M. Yor, Continuous Martingales and Brownian Motion. Springer-Verlag, 1991. MR1083357

[18] L. M. Wu, A deviation inequality for non-reversible Markov processes. Ann. Inst. Henri. Poincaré, Probabilités et Statistiques. 36(2000), 435-445. MR1785390


(1)

by (2.12) andWTN(0,T), we get ,γ,x



WT( ˆµT

γ θ)

r T

‹

≤2 exp

Tr 8

+2 exp ¨

θ

3Tr

2θ+1 «

+2 exp 

 − θ

2r2T

xθγŠ2 

 .

ƒ

Lemma 2.5. For eachβ R fixed, there exist finite positive constants C0,C1,C2 such that for all r>0and all T≥1,

,γ,x

Z T

0

Xtβ dWt

r T !

C0exp

C1r Tmin

1,C2r

. Proof. It is known that forαR,

MT(α)=exp (

α

Z T

0

Xtβ

dWt

α2

2 ZT

0

Xtβ 2

d t )

, T≥0

isFT-martingale, whereFT:=σ(Wt,tT). Therefore, by Hölder inequality, we can get that for anyε(0, 1],

,γ,x exp (

α

ZT

0

Xtβ

dWt )!

,γ,x exp (

(1+ε)2α2

2ε

Z T

0

Xtβ 2

d t )!! ε

1+ε

,γ,x

MT((1+ε)α) 1+1ε

= Eθ,γ,x exp (

(1+ε)2α2

2ε

Z T

0

Xtβ2

d t )!! ε

1+ε

.

In particular, takeε=1, then by Lemma 2.1, there exists finite positive constantsL1=L1(θ,β,γ,x)

andL2=L2(θ,β,γ,x)such that for allT ≥1, for anyα2≤θ2/16, by Cauchy-Schwartz inequality,

,γ,x exp (

α

Z T

0

Xtβ

dWt )!

,γ,x exp (

2α2

ZT

0

(Xtβ)2d t )!!1

2

,γ,x exp (

4α2

ZT

0

X2td t )!!1

4

,γ,x exp (

4α2

ZT

0

(2βXt+β2)d t )!!1

4

L1eL2α 2T

.

Therefore, by Chebyshev inequality, the conclusion of the lemma holds.


(2)

Proof of Theorem 1.1

We only show the first inequality. The second one is similar. By

ˆ θTθ=

WT€µˆTγ

θ Š

−R0T€Xt γ θ Š

dWt ˆ2

T for anyr>0 andT≥1,

Pθ,γ,x€|θˆTθ| ≥rŠ ≤,γ,x

€ σˆ2

T,γ,x( ˆσ2T)

Eθ,γ,x( ˆσ2 T)/2

Š

+Pθ,γ,x

WT 

ˆ µT γ

θ

‹ −

ZT

0

 Xt γ

θ

‹ dWt

Eθ,γ,x( ˆσ2T)r T/2 !

Therefore, by Lemmas 2.3, 2.4 and 2.5, we obtain the first inequality of the theorem.

ƒ

3

Moderate deviations

In this section, we show Theorem 1.2. By (1.2) and (1.3), we have the following estimates

( ˆθTθ) +2θ

T ZT

0

 Xt

γ θ

‹ dWt

(3.1)

≤|WT €

ˆ µTγ

θ Š

| ˆ2

T

+|

2θσˆ2T1|

RT

0

€ Xt

γ θ Š

dWt ˆ2

T and for

γTγ)WT

T + 2γ

T Z T

0

 Xt

γ θ

‹ dWt

(3.2)

≤|µˆT||WT €

ˆ µTγ

θ Š

| ˆ2

T

+|

2γσˆ2

TµˆT|

RT

0

€ Xtγ

θ Š

dWt ˆ2

T

.

Lemma 3.1. (1). For any r>0, lim sup

T→∞

1

λTlog,γ,x

 µˆT

γ θ

W

T

p Tr

‹

=−∞,

lim sup T→∞

1

λTlog,γ,x

µˆT

γ θ

ZT

0

 Xt

γ θ

‹ dWt

≥pTr !

=−∞

and

lim sup T→∞

1

λT

logPθ,γ,x

ˆ σ2T 1

2θ

Z T

0

 Xt γ

θ

‹ dWt

≥pTr !


(3)

(2). For anyδ >0, lim sup

T→∞

1

λT log,γ,x

( ˆθTθ)2θ

T Z T

0

 Xt

γ θ ‹ dWtδ r λT T ! =−∞ and lim sup T→∞ 1

λTlog,γ,x

γTγ)WT T − 2γ T ZT 0  Xt

γ θ ‹ dWtδ r λT T ! =−∞. Proof. (1). We only give the proof of the third assertion in (1). The rest is similar. For anyL>0,

( ˆ σ2T 1

2θ Z T 0  Xt γ

θ ‹ dWt

≥pTr ) ⊂ ¨ ˆ σ2T 1

2θr L « ∪    1 p

T

Z T 0  Xt

γ θ ‹ dWtL    .

By Lemma 2.3, and Lemma 2.5, we have lim sup

T→∞

1

λTlog,γ,x

‚ ˆ σ2 T− 1 2θr L Œ =−∞ and lim sup T→∞ 1

λT log,γ,x

 1 p

T

Z T 0  Xt

γ θ ‹ dWtL

≤ −L2C1C2. Hence,

lim sup T→∞

1

λTlog,γ,x

ˆ σ2 T− 1 2θ Z T 0  Xt

γ θ ‹ dWt

≥pTr !

≤ −L2C1C2.

LettingL→ ∞, we obtain the third conclusion. (2). It follows from (3.1) and (3.2) that

( ˆθTθ)2θ

T Z T

0

 Xtγ

θ ‹ dWtδ r λT T ! ⊂    |WT



ˆ µTγ

θ

‹ | ≥δσˆ2T

p T

2    ∪   

|2θσˆ2T1| ZT 0  Xt γ

θ ‹ dWt

δσˆ2T

p T

2    ⊂    |WT



ˆ µTγ

θ

‹

| ≥δEθ,γ,x( ˆσ2T) p

T

4 

∪¦|σˆ2T,γ,x( ˆσ2T)| ≥,γ,x( ˆσ2T)/2 ©

∪ 

|2θσˆ2T1| Z T 0  Xt

γ θ ‹ dWt

δEθ,γ,x( ˆσ2T) p

T

4 


(4)

and

γTγ)− 2γ

T ZT

0

 Xt

γ θ ‹ dWtδ r λT T ! ⊂    |µˆT||WT



ˆ µT

γ θ

‹ | ≥δσˆ2T

p T

2    ∪   

|2γσˆ2TµˆT|

Z T 0  Xt

γ θ ‹ dWt

δσˆ2T

p T

2    ⊂ § µˆT

γ θγ 2θ ª

∪¦|σˆ2TEθ,γ,x( ˆσ2T)| ≥Eθ,γ,x( ˆσ2T)/2©

∪ 

 3γ

2θ|WT



ˆ µT

γ θ

‹

| ≥δEθ,γ,x( ˆσ2T) p

T

4    ∪     2γσˆ

2 Tγ θ + µˆT

γ θ ‹ Z T 0  Xt

γ θ ‹ dWt

δEθ,γ,x( ˆσ2T) p

T

4 

 .

Therefore, by Lemmas 2.3 and (1), we get the conclusions.

ƒ

Lemma 3.2. For eachβ,κ R fixed, §

,γ,x 

κ p

TλT

RT

0 Xtβ

dWt∈ ·

‹ ,T ≥1

ª

satisfies the LDP with speedλTand rate function J(u) = θ2u2

κ2(θ+2θ β)2).

Proof. By (2.12) and Lemma 2.3, we can get for anyδ >0, lim

T→∞

1

T log,γ,x 1 T Z T 0

Xtβ2 d t

1 2θ +

1

θ2(γ−θ β) 2 ≥δ !

<0. (3.3) Therefore, Proposition 1 in[4]yields the conclusion of the lemma.

ƒ

Proof of Theorem 1.2

By Lemma 3.1,{,γ,x( q

T

λT( ˆθTθ)∈ ·),T ≥1}and{,γ,x(

q T

λTγTγ)∈ ·),T ≥1}are

expo-nential equivalent to (

,γ,x r T λT 2θ T ZT 0  Xt

γ θ

‹ dWt∈ ·

! ,T ≥1

)

and

( ,γ,x

r T λT WT T + 2γ T Z T 0  Xtγ

θ ‹ dWt ! ∈ · ! ,T1

) , respectively. Noting forγ6= 0, WT

T + 2γ T RT 0 € Xt

γ θ Š

dWt = 2 γ T

RT

0

Xt

γ θ+

1 2γ

dWt, Theorem 1.2 follows from Lemma 3.2.


(5)

ƒ

AcknowledgmentsThe authors are grateful to referees for their comments and suggestions.

References

[1] B. Bercu, A. Rouault. Sharp large deviations for the Ornstein-Uhlenbeck process.Theory of Prob. and its Appl., 46(2002), 1-19. MR1968706

[2] S. G. Bobkov, F. Götze. Exponential Integrability and Transportation Cost Related to Loga-rithmic Sobolev Inequalities.Journal of Functional Analysis, 163(1999), 1-28. MR1682772

[3] P. Cattiaux, A. Guillin. Deviation bounds for additive functionals of Markov process.ESAIM: Probability and Statistics. 12(2008), 12-29. MR2367991

[4] A. Dembo. Moderate Deviations for Martingales with Bounded Jumps.Electronic Commu-nications in Probability, 1 (1996),11-17. MR1386290

[5] A. Dembo, D. Zeitouni.Large Deviations Techniques and Applications, Springer-Verlag, 1998. MR1619036

[6] J. D. Deuschel, D. W. Stroock.Large Deviations, New York, 1989. MR0997938

[7] H. Djellout, A. Guillin, L. M. Wu. Transportation cost-information inequalities and appli-cations to random dynamical system and diffusions.Ann. Probab., 32(2004), 2702-2732. MR2078555

[8] H. Djellout, A. Guillin, L. M. Wu. Moderate deviations for non-linear functionals and em-pirical spectral density of moving average processes.Ann. Inst. H. Poincar´e Probab. Statist., 42(2006), 393-416. MR2242954

[9] D. Florens-Landais, H. Pham, Large deviations in estimate of an Ornstein-Uhlenbeck model. Journal of Applied Probability, 36(1999), 60-77. MR1699608

[10] M. Gourcy, L. M. Wu, Logarithmic Sobolev inequalities of diffusions for the L2 metric. Potential Analysis, 25(2006), 77-102. MR2238937

[11] A. Guillin, R. Liptser, Examples of moderate deviation principles for diffusion processes. Discrete and continuous dynamical systems-series B, 6(2006), 803-828. MR2223909

[12] M. Ledoux, Concentration of Measure and Logarithmic Sobolev Inequalities. S´eminaire de probabilit´es XXXIII, Lecture Notes in Mathematics, 1709(1999), 120-216. MR1767995

[13] M. Ledoux, The Concentration of Measure Phenomenon.Mathematical Surveys and Mono-graphs 89, American Mathematical Society, 2001. MR1849347

[14] P. Lezaud, Chernoff and Berry-Essen’s inequalities for Markov processes.ESAIMS: Probabil-ity and Statistics, 5(2001), 183-201. MR1875670

[15] Yury A. Kutoyants, Statistical Inference for Ergodic Diffusion Processes. Springer Series in Statistics, London, 2004, MR2144185


(6)

[16] B. L. S. Prakasa Rao, Statistical Inference for Diffusion Type Processes. Oxford University Presss, New York,1999.

[17] D. Revuz, M. Yor, Continuous Martingales and Brownian Motion. Springer-Verlag, 1991. MR1083357

[18] L. M. Wu, A deviation inequality for non-reversible Markov processes. Ann. Inst. Henri. Poincaré, Probabilités et Statistiques. 36(2000), 435-445. MR1785390


Dokumen yang terkait

AN ALIS IS YU RID IS PUT USAN BE B AS DAL AM P E RKAR A TIND AK P IDA NA P E NY E RTA AN M E L AK U K A N P R AK T IK K E DO K T E RA N YA NG M E N G A K IB ATK AN M ATINYA P AS IE N ( PUT USA N N O MOR: 9 0/PID.B /2011/ PN.MD O)

0 82 16

ANALISIS FAKTOR YANGMEMPENGARUHI FERTILITAS PASANGAN USIA SUBUR DI DESA SEMBORO KECAMATAN SEMBORO KABUPATEN JEMBER TAHUN 2011

2 53 20

EFEKTIVITAS PENDIDIKAN KESEHATAN TENTANG PERTOLONGAN PERTAMA PADA KECELAKAAN (P3K) TERHADAP SIKAP MASYARAKAT DALAM PENANGANAN KORBAN KECELAKAAN LALU LINTAS (Studi Di Wilayah RT 05 RW 04 Kelurahan Sukun Kota Malang)

45 393 31

FAKTOR – FAKTOR YANG MEMPENGARUHI PENYERAPAN TENAGA KERJA INDUSTRI PENGOLAHAN BESAR DAN MENENGAH PADA TINGKAT KABUPATEN / KOTA DI JAWA TIMUR TAHUN 2006 - 2011

1 35 26

A DISCOURSE ANALYSIS ON “SPA: REGAIN BALANCE OF YOUR INNER AND OUTER BEAUTY” IN THE JAKARTA POST ON 4 MARCH 2011

9 161 13

Pengaruh kualitas aktiva produktif dan non performing financing terhadap return on asset perbankan syariah (Studi Pada 3 Bank Umum Syariah Tahun 2011 – 2014)

6 101 0

Pengaruh pemahaman fiqh muamalat mahasiswa terhadap keputusan membeli produk fashion palsu (study pada mahasiswa angkatan 2011 & 2012 prodi muamalat fakultas syariah dan hukum UIN Syarif Hidayatullah Jakarta)

0 22 0

Pendidikan Agama Islam Untuk Kelas 3 SD Kelas 3 Suyanto Suyoto 2011

4 108 178

ANALISIS NOTA KESEPAHAMAN ANTARA BANK INDONESIA, POLRI, DAN KEJAKSAAN REPUBLIK INDONESIA TAHUN 2011 SEBAGAI MEKANISME PERCEPATAN PENANGANAN TINDAK PIDANA PERBANKAN KHUSUSNYA BANK INDONESIA SEBAGAI PIHAK PELAPOR

1 17 40

KOORDINASI OTORITAS JASA KEUANGAN (OJK) DENGAN LEMBAGA PENJAMIN SIMPANAN (LPS) DAN BANK INDONESIA (BI) DALAM UPAYA PENANGANAN BANK BERMASALAH BERDASARKAN UNDANG-UNDANG RI NOMOR 21 TAHUN 2011 TENTANG OTORITAS JASA KEUANGAN

3 32 52