Proof of Theorem 3 for the first moment

variant of the two-species Richardson model with prey and predators, see for example Häggström and Pemantle [6], Kordzakhia and Lalley [8]. Nothing is apparently known on this process. In Section 3, we show that the birth-and-assassination process is the scaling limit, as n goes to infin- ity, of the rumor scotching process when G is the complete graph over n vertices and the intensity is λn Theorem 4. 2 Integral equations for the birth-and-assassination process

2.1 Proof of Theorem 3 for the first moment

In this paragraph, we prove Theorem 3ii. Let X t ∈ [0, +∞] be the total number of born particles in the process B given that the root cannot die before time t, and Y t be the total number of born particles given that the root dies at time t. By definition, if D is an exponential variable with mean 1 independent of Y , then N d = X 0 d = Y D, where the symbol d = stands for distributional equality. We notice also that the memoryless property of the exponential variable implies X t d = Y t + D. The recursive structure of the birth-and-assassination process leads to the following equality in distribution Y t d = 1 + X i: ξ i ≤t X i t − ξ i d = 1 + X i: ξ i ≤t X i ξ i , where Φ = {ξ i } i ∈N is a Poisson point process of intensity λ and X i , i ∈ N, are independent copies of X . Note that since all variables are non-negative, there is no issue with the case Y t = + ∞. We obtain the following RDE for the random function Y : Y t d = 1 + X i: ξ i ≤t Y i ξ i + D i , 3 where Y i , and D i are independent copies of Y and D respectively. This last RDE is the cornerstone of this work. Assuming that E λ N ∞ we first prove that necessarily λ ∈ 0, 14. For convenience, we often drop the parameter λ in E λ and other objects depending on λ. From Fubini’s theorem, EX 0 = EN = R ∞ EY te −t d t and therefore EY t ∞ for almost all t ≥ 0. Note however that since t 7→ Y t is monotone for the stochastic domination, it implies that EY t ∞ for all t 0. The same argument gives the next lemma. Lemma 1. Let t 0 and u 0, if E[N u ] ∞ then E[Y t u ] ∞. Now, taking expectation in 3, we get EY t = 1 + λ Z t Z ∞ EY x + se −s dsd x. Let f 1 t = EY t, it satisfies the integral equation, for all t ≥ 0, f 1 t = 1 + λ Z t e x Z ∞ x f 1 se −s dsd x. 4 2018 Taking the derivative once and multiplying by e −t , we get: f ′ 1 te −t = λ R ∞ t f 1 se −s ds. Then, taking the derivative a second time and multiplying by e t : f ′′ 1 t − f ′ 1 t = −λ f 1 t. So, finally, f 1 solves a linear ordinary differential equation of the second order x ′′ − x ′ + λx = 0, 5 with initial condition x0 = 1. If λ 14 the solutions of 5 are xt = e t 2 cost p 4 λ − 1 + a sint p 4 λ − 1, for some constant a. Since f 1 t is necessarily positive, this leads to a contradiction and EN = ∞. Assume now that 0 λ 14 and let ∆ = p 1 − 4λ , α = 1 − ∆ 2 and β = 1 + ∆ 2 . 6 α, β are the roots of the polynomial X 2 − X + λ = 0. The solutions of 5 are x a t = 1 − ae αt + ae β t for some constant a. Whereas, for λ = 14, α = 12 and the solutions of 5 are x a t = at + 1e t 2 . For 0 λ ≤ 14, we check easily that the functions x a with a ≥ 0 are the nonnegative solutions of the integral equation 4. It remains to prove that if 0 λ ≤ 14 then EN ∞ and f 1 t = e αt . Indeed, then EN = R ∞ f 1 te −t d t = 1 − α −1 as stated in Theorem 3ii. To this end, define f n 1 t = E minY t, n, from 3, minY t, n ≤ st 1 + X i: ξ i ≤t minY i ξ i + D i , n. Taking expectation, we obtain, for all t ≥ 0, f n 1 t ≤ 1 + λ Z t e x Z ∞ x f n 1 se −s dsd x. 7 We now state a lemma which will be used multiple times in this paper. We define γλ = 1 + ∆1 − ∆ = βα. 8 Let 1 u γ or equivalently λ uu + 1 −2 , we define H u , the set of measurable functions h : [0, ∞ → [0, ∞ such that h is non-decreasing and sup t ≥0 hte −uαt ∞. Let C 0, we define the mapping from H u to H u , Ψ : h 7→ C e u αt + λ Z t e x Z ∞ x hse −s dsd x. In order to check that Ψ is indeed a mapping from H u to H u , we use the fact that if 1 u γ, then u α 1. Note also that if 1 u γ, then uα − λ − u 2 α 2 0. If λ = 14, we also define the mapping from H 1 to H 1 , Φ : h 7→ 1 + 1 4 Z t e x Z ∞ x hse −s dsd x. recall that for λ = 14, α = 12. 2019 Lemma 2. i Let 1 u γ and f ∈ H u such that f ≤ Ψ f . Then for all t ≥ 0, f t ≤ C u α1 − uα u α − λ − u 2 α 2 e u αt − C λ u α − λ − u 2 α 2 e αt . ii If λ = 14 and f ∈ H 1 is such that f ≤ Φ f , then for all t ≥ 0, f t ≤ e t 2 . Before proving Lemma 2, we conclude the proof of Theorem 3ii. For 0 λ 14, from 7, we may apply Lemma 2i applied to 1 u βα, C = 1. We get that f n 1 t ≤ C u e αut for some C u 0. The monotone convergence theorem implies that f 1 t = lim n →∞ f n 1 t exists and is bounded by C u e αut . Therefore f 1 solves the integral equation 4 and is equal to x a for some a ≥ 0. From what precedes, we get x a t ≤ C u e αut , however, since αu β, the only possibility is a = 0 and f 1 t = e αt . Similarly, if λ = 14, from Lemma 2ii, f 1 t ≤ e t 2 . This proves that f 1 is finite, and we thus have f 1 = x a for some a ≥ 0. Again, the only possibility is a = 0 since x a t ≤ e t 2 implies a = 0. Proof of Lemma 2. i. The fixed points of the mapping Ψ are the functions h a,b such that h a,b t = ae αt + be β t + C u α1 − uα u α − λ − u 2 α 2 e u αt , with a+b+C u α1−uα u α−λ−u 2 α 2 = C. The only fixed point in H u is h ∗ := h a ∗ ,0 with a ∗ = −Cλuα−λ−u 2 α 2 . Let C u denote the set of continuous functions in H u , note that Ψ is also a mapping from C u to C u . Now let g ∈ C u and for k ≥ 1, g k = Ψg k −1 . We first prove that for all t ≥ 0 , lim k g k t = h ∗ t. If 1 u γ then uα1 − uα λ and u α1−uα u α−λ−u 2 α 2 is positive. We deduce easily that if g t ≤ Le u αt then g 1 t = Ψgt ≤ C e u αt + L λ u α1−uα e u αt − 1 ≤ L 1 e u αt , with L 1 = C + L λ u α1−uα . By recursion, we obtain that lim sup k g k t ≤ L ∞ e u αt , with L ∞ = Cuα1 − uαuα − λ − u 2 α 2 ∞. From Arzela-Ascoli’s theorem, g k k ∈N is relatively compact in C u and any accumulation point converges to h ∗ since h ∗ is the only fixed point of Ψ in C u . Now since f ∈ H u , there exists a constant L 0 such that for all t ≥ 0, f t ≤ g t := Le u αt . The monotonicity of the mapping Ψ implies that Ψ f ≤ Ψg = g 1 . By assumption, f ≤ Ψ f thus by recursion f ≤ lim n g n = h ∗ . ii. The function x t = e t 2 is the only fixed point of Φ in H 1 . Moreover, if gt ≤ C e t 2 then we also have Φgt ≤ C e t 2 . Then, if g is continuous, arguing as above, from Arzela-Ascoli’s theorem, Φ k g k ∈N converges to x . We conclude as in i. ƒ

2.2 Proof of Theorem 3i

Dokumen yang terkait

AN ALIS IS YU RID IS PUT USAN BE B AS DAL AM P E RKAR A TIND AK P IDA NA P E NY E RTA AN M E L AK U K A N P R AK T IK K E DO K T E RA N YA NG M E N G A K IB ATK AN M ATINYA P AS IE N ( PUT USA N N O MOR: 9 0/PID.B /2011/ PN.MD O)

0 82 16

ANALISIS FAKTOR YANGMEMPENGARUHI FERTILITAS PASANGAN USIA SUBUR DI DESA SEMBORO KECAMATAN SEMBORO KABUPATEN JEMBER TAHUN 2011

2 53 20

EFEKTIVITAS PENDIDIKAN KESEHATAN TENTANG PERTOLONGAN PERTAMA PADA KECELAKAAN (P3K) TERHADAP SIKAP MASYARAKAT DALAM PENANGANAN KORBAN KECELAKAAN LALU LINTAS (Studi Di Wilayah RT 05 RW 04 Kelurahan Sukun Kota Malang)

45 393 31

FAKTOR – FAKTOR YANG MEMPENGARUHI PENYERAPAN TENAGA KERJA INDUSTRI PENGOLAHAN BESAR DAN MENENGAH PADA TINGKAT KABUPATEN / KOTA DI JAWA TIMUR TAHUN 2006 - 2011

1 35 26

A DISCOURSE ANALYSIS ON “SPA: REGAIN BALANCE OF YOUR INNER AND OUTER BEAUTY” IN THE JAKARTA POST ON 4 MARCH 2011

9 161 13

Pengaruh kualitas aktiva produktif dan non performing financing terhadap return on asset perbankan syariah (Studi Pada 3 Bank Umum Syariah Tahun 2011 – 2014)

6 101 0

Pengaruh pemahaman fiqh muamalat mahasiswa terhadap keputusan membeli produk fashion palsu (study pada mahasiswa angkatan 2011 & 2012 prodi muamalat fakultas syariah dan hukum UIN Syarif Hidayatullah Jakarta)

0 22 0

Pendidikan Agama Islam Untuk Kelas 3 SD Kelas 3 Suyanto Suyoto 2011

4 108 178

ANALISIS NOTA KESEPAHAMAN ANTARA BANK INDONESIA, POLRI, DAN KEJAKSAAN REPUBLIK INDONESIA TAHUN 2011 SEBAGAI MEKANISME PERCEPATAN PENANGANAN TINDAK PIDANA PERBANKAN KHUSUSNYA BANK INDONESIA SEBAGAI PIHAK PELAPOR

1 17 40

KOORDINASI OTORITAS JASA KEUANGAN (OJK) DENGAN LEMBAGA PENJAMIN SIMPANAN (LPS) DAN BANK INDONESIA (BI) DALAM UPAYA PENANGANAN BANK BERMASALAH BERDASARKAN UNDANG-UNDANG RI NOMOR 21 TAHUN 2011 TENTANG OTORITAS JASA KEUANGAN

3 32 52