Proof of Theorem 3i

Lemma 2. i Let 1 u γ and f ∈ H u such that f ≤ Ψ f . Then for all t ≥ 0, f t ≤ C u α1 − uα u α − λ − u 2 α 2 e u αt − C λ u α − λ − u 2 α 2 e αt . ii If λ = 14 and f ∈ H 1 is such that f ≤ Φ f , then for all t ≥ 0, f t ≤ e t 2 . Before proving Lemma 2, we conclude the proof of Theorem 3ii. For 0 λ 14, from 7, we may apply Lemma 2i applied to 1 u βα, C = 1. We get that f n 1 t ≤ C u e αut for some C u 0. The monotone convergence theorem implies that f 1 t = lim n →∞ f n 1 t exists and is bounded by C u e αut . Therefore f 1 solves the integral equation 4 and is equal to x a for some a ≥ 0. From what precedes, we get x a t ≤ C u e αut , however, since αu β, the only possibility is a = 0 and f 1 t = e αt . Similarly, if λ = 14, from Lemma 2ii, f 1 t ≤ e t 2 . This proves that f 1 is finite, and we thus have f 1 = x a for some a ≥ 0. Again, the only possibility is a = 0 since x a t ≤ e t 2 implies a = 0. Proof of Lemma 2. i. The fixed points of the mapping Ψ are the functions h a,b such that h a,b t = ae αt + be β t + C u α1 − uα u α − λ − u 2 α 2 e u αt , with a+b+C u α1−uα u α−λ−u 2 α 2 = C. The only fixed point in H u is h ∗ := h a ∗ ,0 with a ∗ = −Cλuα−λ−u 2 α 2 . Let C u denote the set of continuous functions in H u , note that Ψ is also a mapping from C u to C u . Now let g ∈ C u and for k ≥ 1, g k = Ψg k −1 . We first prove that for all t ≥ 0 , lim k g k t = h ∗ t. If 1 u γ then uα1 − uα λ and u α1−uα u α−λ−u 2 α 2 is positive. We deduce easily that if g t ≤ Le u αt then g 1 t = Ψgt ≤ C e u αt + L λ u α1−uα e u αt − 1 ≤ L 1 e u αt , with L 1 = C + L λ u α1−uα . By recursion, we obtain that lim sup k g k t ≤ L ∞ e u αt , with L ∞ = Cuα1 − uαuα − λ − u 2 α 2 ∞. From Arzela-Ascoli’s theorem, g k k ∈N is relatively compact in C u and any accumulation point converges to h ∗ since h ∗ is the only fixed point of Ψ in C u . Now since f ∈ H u , there exists a constant L 0 such that for all t ≥ 0, f t ≤ g t := Le u αt . The monotonicity of the mapping Ψ implies that Ψ f ≤ Ψg = g 1 . By assumption, f ≤ Ψ f thus by recursion f ≤ lim n g n = h ∗ . ii. The function x t = e t 2 is the only fixed point of Φ in H 1 . Moreover, if gt ≤ C e t 2 then we also have Φgt ≤ C e t 2 . Then, if g is continuous, arguing as above, from Arzela-Ascoli’s theorem, Φ k g k ∈N converges to x . We conclude as in i. ƒ

2.2 Proof of Theorem 3i

We define f p t = E λ [Y t p ]. As above, we often drop the parameter λ in E λ and other objects depending on λ. Lemma 3. Let p ≥ 2, there exists a polynomial Q p with degree p such that for all t 0, 2020 i If λ ∈ 0, pp + 1 −2 , then f p t = Q p e αt . ii If λ ≥ pp + 1 −2 , then f p t = ∞, Note that if such polynomial Q p exists then Q p x ≥ 1 for all x ≥ 1. Note also that λ ∈ 0, pp+1 −2 implies that p γ = βα where γ was defined by 8, and thus pα β 1. Hence Lemma 3 implies Theorem 3i since E[N p ] = R f p te −t d t. Let κ p X denote the p th cumulant of a random variable X whose moment generating function is defined in a neighborhood of 0: ln Ee θ X = P p ≥0 κ p X θ p p. In particular κ X = 0, κ 1 X = EX and κ 2 X = VarX . Using the exponential formula E exp X ξ i ∈Φ h ξ i , Z i = expλ Z ∞ Ee hx,Z − 1d x, 9 valid for all non-negative function h and iid variables Z i , i ∈ N, independent of Φ = {ξ i } i ∈N a Poisson point process of intensity λ, we obtain that for all p ≥ 1, κ p    X i: ξ i ≤t h ξ i , Z i    = λ Z t Eh p x, Zd x. 10 Due to this last formula, it will be easier to deal with the cumulant g p t = κ p Y t. By recursion, we will prove the next lemma which implies Lemma 3. Lemma 4. Let p ≥ 2, there exists a polynomial R p with degree p, positive on [1, ∞ such that, for all t 0, i If λ ∈ 0, pp + 1 −2 , then f p t ∞ and g p t = R p e αt . ii If λ ≥ pp + 1 −2 , then f p t = ∞, Proof of Lemma 4. In §2.1, we have computed f p for p = 1 and found R 1 x = x. Let p ≥ 2 and assume now that the statement of the Lemma 4 holds for q = 1, · · · , p − 1. We assume first that f p t ∞, we shall prove that necessarily λ ∈ 0, pp + 1 −2 and g p t = R p e αt . Without loss of generality we assume that 0 λ 14. From Fubini’s theorem, using the linearity of cumulants in 3 and 10, we get g p t = λ Z t Z ∞ E[Y x + s p ]e −s dsd x = λ Z t e x Z ∞ x f p se −s dsd x, 11 note that Fubini’s Theorem implies the existence of f p s for all s 0. From Jensen inequality f p t ≥ g 1 t p = e p αt and the integral R ∞ x e p αs e −s dsd x is finite if and only if p α 1. We may thus assume that p α 1. We now recall the identity: EX p = P π Q I ∈π κ |I| X , where the sum is over all set partitions of {1, · · · , p}, I ∈ π means I is one of the subsets into which the set is partitioned, and |I| is the cardinal of I. This formula implies that EX p = κ p X + Σ p −1 κ 1 X , · · · , κ p −1 X , where 2021 Σ p −1 x 1 , · · · , x p −1 is a polynomial in p − 1 variables with non-negative coefficients and each of its monomial Q k ℓ=1 x n ℓ i ℓ satisfies P ℓ n ℓ i ℓ = p. Using the recurence hypothesis, we deduce from 11 that there exists a polynomial ˜ R p x = P p k=1 r k x k of degree p with r p 0 such that g p t = λ Z t e x Z ∞ x € g p se −s + ˜ R p e αs e −s Š dsd x = p X k=1 λr k k α1 − kα e k αt + λ Z t e x Z ∞ x g p se −s dsd x, 12 recall that p α 1. Now we take the derivative of this last expression, multiply by e −t and take the derivative again. We get that g p is a solution of the differential equation: x ′′ − x ′ + λx = − p X k=1 λr k e k αt , 13 with initial condition x0 = 0. Thus necessarily g p t = ae αt + be β t + ϕt, where ϕt is a particular solution of the differential equation 13. Assume first that λ 6= pp + 1 −2 , then it is easy to check that p + 1 λ − pα and pp + 1 −2 − λ are different from 0 and have the same sign. Looking for a function ϕ of the form ϕt = P p k=1 c k e k αt gives c k = −λr k k 2 α 2 − kα + λ −1 = λr k k − 1 −1 k + 1λ − kα −1 . If λ pp + 1 −2 then p α β and the leading term in g p is c p e p αt . However, if λ pp + 1 −2 , c p 0 and thus g p t 0 for t large enough. This is a contradiction with Equation 11 which asserts that g p t is positive. We now check that if 0 λ pp + 1 −2 then f p t is finite. We define f n p t = E[minY t, n p ]. We use the following identity, N X i=1 y i p = N X i=1 p −1 X k=0 p − 1 k y k+1 i    N X j 6=i y i    p −k−1 . Then from 3 we get, Y t − 1 p d = 14 X ξ i ≤t Y i ξ i + D i p + X ξ i ≤t p −2 X k=0 p − 1 k Y i ξ i + D i k+1    X ξ j 6=ξ i ≤t Y j ξ j + D j    p −k−1 . The recursion hypothesis implies that there exists a constant C such that f k t = Q k e αt ≤ C e k αt for all 1 ≤ k ≤ p − 1. Thus, the identity Y t p = Y t − 1 p − P p −1 k=0 p k −1 p −k Y t k gives f n p t ≤ E[minY t − 1, n p ] + p −1 X k=0 p k C e k αt ≤ E[minY t − 1, n p ] + C 1 e p αt . From the recursion hypothesis, if 1 ≤ k ≤ p − 1, Z t E[Y x + D k ]d x = Z t e x Z ∞ x f k se −s dsd x = ˜ Q k e αt ≤ C e k αt 2022 for some constant C 0. We take the expectation in 14 and use Slyvniak’s theorem to obtain f n p t ≤ C 1 e p αt + λ Z t e x Z ∞ x f n p se −s dsd x + λ Z t p −2 X k=0 p − 1 k E[Y i x + D i k+1 ]E    X ξ j ≤t Y j ξ j + D j p −k−1    d x ≤ C 1 e p αt + λ Z t e x Z ∞ x f n p se −s dsd x + λ p −2 X k=0 p − 1 k ˜ Q k+1 e αt E[Y t − 1 p −k−1 ] ≤ C 2 e p αt + λ Z t e x Z ∞ x f n p se −s dsd x So finally for a suitable choice of C, | f n p t ≤ C e p αt + λ Z t e x Z ∞ x f n p se −s dsd x. 15 From Lemma 2, f n p t ≤ C ′ e p αt , and, by the monotone convergence theorem, g p t ≤ f p t ≤ C ′ e p αt . From what precedes: g p t = ae αt + be β t + ϕt, with ϕt = P p k=1 c k e k αt , with c p 0. If b 0, since λ pp + 1 −2 then p α β and the leading term in g p is be β t which is in contradiction with g p t ≤ C ′ e p αt . If b 0, this is a contraction with Equation 11 which asserts that g p t is positive. Therefore b = 0 and g p t = ae αt + ϕt = R p e αt . It remains to check that if λ = pp + 1 −2 then for all t 0, f p t = ∞. We have proved that, for all λ pp+1 −2 , g p t = u p λp−1 −1 p+1λ−pα −1 e p αt +S p −1 e αt , where S p −1 is a polynomial of degree at most p −1 and u p λ 0. Note that lim λ↑pp+1 −2 p + 1λ − pα = 0. A closer look at the recursion shows also that u p λ is a sum of products of terms in λ and λℓ − 1 −1 ℓ + 1λ − ℓα −1 , with 2 ≤ ℓ ≤ p − 1. In particular, we deduce that lim λ↑pp+1 −2 u p λ 0. Similarly, the coefficients of S p −1 are equal to sums of products of integers and terms in λ and λℓ − 1 −1 ℓ + 1λ − ℓα −1 , with 2 ≤ ℓ ≤ p − 1. Thus they stay bounded as λ goes to pp + 1 −2 and we obtain, for all t 0, lim inf λ↑pp+1 −2 f p t ≥ lim λ↑pp+1 −2 g p t = ∞. 16 Now, for all t 0, the random variable Y t is stochastically non-decreasing with λ. Therefore E λ [Y t p ] is non-decreasing and 16 implies that E 1 4 [Y t p ] = ∞. The proof of the recursion is complete. ƒ

2.3 Proof of Theorem 3iii

Dokumen yang terkait

AN ALIS IS YU RID IS PUT USAN BE B AS DAL AM P E RKAR A TIND AK P IDA NA P E NY E RTA AN M E L AK U K A N P R AK T IK K E DO K T E RA N YA NG M E N G A K IB ATK AN M ATINYA P AS IE N ( PUT USA N N O MOR: 9 0/PID.B /2011/ PN.MD O)

0 82 16

ANALISIS FAKTOR YANGMEMPENGARUHI FERTILITAS PASANGAN USIA SUBUR DI DESA SEMBORO KECAMATAN SEMBORO KABUPATEN JEMBER TAHUN 2011

2 53 20

EFEKTIVITAS PENDIDIKAN KESEHATAN TENTANG PERTOLONGAN PERTAMA PADA KECELAKAAN (P3K) TERHADAP SIKAP MASYARAKAT DALAM PENANGANAN KORBAN KECELAKAAN LALU LINTAS (Studi Di Wilayah RT 05 RW 04 Kelurahan Sukun Kota Malang)

45 393 31

FAKTOR – FAKTOR YANG MEMPENGARUHI PENYERAPAN TENAGA KERJA INDUSTRI PENGOLAHAN BESAR DAN MENENGAH PADA TINGKAT KABUPATEN / KOTA DI JAWA TIMUR TAHUN 2006 - 2011

1 35 26

A DISCOURSE ANALYSIS ON “SPA: REGAIN BALANCE OF YOUR INNER AND OUTER BEAUTY” IN THE JAKARTA POST ON 4 MARCH 2011

9 161 13

Pengaruh kualitas aktiva produktif dan non performing financing terhadap return on asset perbankan syariah (Studi Pada 3 Bank Umum Syariah Tahun 2011 – 2014)

6 101 0

Pengaruh pemahaman fiqh muamalat mahasiswa terhadap keputusan membeli produk fashion palsu (study pada mahasiswa angkatan 2011 & 2012 prodi muamalat fakultas syariah dan hukum UIN Syarif Hidayatullah Jakarta)

0 22 0

Pendidikan Agama Islam Untuk Kelas 3 SD Kelas 3 Suyanto Suyoto 2011

4 108 178

ANALISIS NOTA KESEPAHAMAN ANTARA BANK INDONESIA, POLRI, DAN KEJAKSAAN REPUBLIK INDONESIA TAHUN 2011 SEBAGAI MEKANISME PERCEPATAN PENANGANAN TINDAK PIDANA PERBANKAN KHUSUSNYA BANK INDONESIA SEBAGAI PIHAK PELAPOR

1 17 40

KOORDINASI OTORITAS JASA KEUANGAN (OJK) DENGAN LEMBAGA PENJAMIN SIMPANAN (LPS) DAN BANK INDONESIA (BI) DALAM UPAYA PENANGANAN BANK BERMASALAH BERDASARKAN UNDANG-UNDANG RI NOMOR 21 TAHUN 2011 TENTANG OTORITAS JASA KEUANGAN

3 32 52