Proof of 17. Proof of 18.

Since f 1 t = e αt and α 2 = α − λ, g 2 satisfies the integral equation: g 2 t = λ 22 λ − α € e 2 αt − 1 Š + λ Z t e x Z ∞ x g 2 se −s dsd x. We deduce that g 2 solves an ordinary differential equation: x ′′ − x ′ + λx = −λe 2 αt , with initial condition x0 = 0. Thus g 2 is of the form: g 2 t = ae αt + be β t + λ 3 λ−2α e 2 αt . with a + b + λ 3 λ−2α = 0. From Lemma 4, b = 0 so finally g 2 t = λ 3 λ − 2α € e 2 αt − e αt Š and f 2 t = 2 2 λ − α 3 λ − 2α e 2 αt − λ 3 λ − 2α e αt . We conclude by computing EN 2 = R e −t f 2 td t.

2.4 Proof of Theorem 2

As usual we drop the parameter λ in E λ . From 8, we have γλ = 1 −2λ+ p 1 −4λ 2 λ . To prove Theorem 2, we shall prove two statements If E[N u ] ∞ then u ≤ γ, 17 If 1 ≤ u γ then E[N u ] ∞. 18

2.4.1 Proof of 17.

Let u ≥ 1, we assume that E[N u ] ∞. From Lemma 1 and 3, we get E[Y t u ] = E    1 + X i: ξ i ≤t Y i ξ i + D i    u . Let f u t = E[Y t u ]. Taking expectation and using the inequality x + y u ≥ x u + y u , for all positive x and y, we get: f u t ≥ 1 + λ Z t E f u x + Dd x ≥ 1 + λ Z t e x Z ∞ x f u se −s dsd x. 19 From Jensen’s Inequality, f u t ≥ f 1 t u = e u αt . Note that the integral R ∞ x e αus e −s ds is finite if and only if u α −1 . Suppose now that γ u α −1 . We use the fact: if u γ then u 2 α 2 − uα + λ 0, to deduce that there exists 0 ε λ such that u 2 α 2 − uα + λ ε. 20 2024 Let ˜ λ = λ − ε, ˜ α = α˜ λ, ˜ β = β˜ λ, we may assume that ε is small enough to ensure also that u α ˜ β. 21 Indeed, for all λ ∈ 0, 14, αλγλ = βλ and the mapping λ 7→ βλ is obviously continuous. We compute a lower bound from 19 as follows: f u t ≥ 1 + ˜λ Z t e x Z ∞ x f u se −s dsd x + ε Z t e x Z ∞ x f u se −s dsd x ≥ 1 + ˜λ Z t e x Z ∞ x f u se −s dsd x + ε Z t e x Z ∞ x e u αs e −s dsd x ≥ 1 + Ce u αt − 1 + ˜λ Z t e x Z ∞ x f u se −s dsd x, 22 with C = εuα1 − uα −1 0. We consider the mapping Ψ : h 7→ 1 + Ce u αt − 1 + ˜ λ R t e x R ∞ x hse −s dsd x. Ψ is monotone: if for all t ≥ 0, h 1 t ≥ h 2 t then for all t ≥ 0, Ψh 1 t ≥ Ψh 2 t. Since, for all t ≥ 0, f u t ≥ Ψ f u t ≥ 1, we deduce by iteration that there exists a function h such that h = Ψh ≥ 1. Solving h = Ψh is simple, taking twice the derivative, we get, h ′′ − h ′ + ˜ λh = −εe p αt . Therefore, h = ae ˜ αt + be ˜ β t − εu 2 α 2 − uα + ˜λ −1 e u αt for some con- stant a and b. From 21 the leading term as t goes to infinity is equal to −εu 2 α 2 − uα + ˜λ −1 e u αt . However from 20, −εu 2 α 2 − uα + ˜λ −1 0 and it contradicts the assumption that ht ≥ 1 for all t ≥ 0. Therefore we have proved that u ≤ γ.

2.4.2 Proof of 18.

Let f n u t = E[minY t, n u ], we have the following lemma. Lemma 5. There exists a constant C 0 such that for all t ≥ 0: f n u t ≤ C e u αt + λ Z t e x Z ∞ x f n u se −s dsd x. The statement 18 is a direct consequence of Lemmas 2 and 5. Indeed, note that f n u ≤ n u , thus by Lemma 2, for all t ≥ 0, f n u t ≤ C 1 e u αt for some positive constant C 1 independent of n. From the Monotone Convergence Theorem, we deduce that, for all t ≥ 0, f u t ≤ C 1 e u αt . It remains to prove Lemma 5. Proof of Lemma 5. The lemma is already proved if u is an integer in 15. The general case is a slight extension of the same argument. We write u = p − 1 + v with v ∈ 0, 1 and p ∈ N ∗ . We use the inequality, for all y i ≥ 0, 1 ≤ i ≤ N, N X i=1 y i u ≤ N X i=1 p −1 X k=0 p − 1 k y k+v i    N X j 6=i y i    p −k−1 2025 which follows from the inequality P y i v ≤ P y v i . Then from 3 we get the stochastic domina- tion Y t − 1 u ≤ st X ξ i ≤t Y i ξ i + D i u + X ξ i ≤t p −2 X k=0 p − 1 k Y i ξ i + D i k+v    X ξ j 6=ξ i ≤t Y j ξ j + D j    p −k−1 From Lemma 3, there exists C such that for all 1 ≤ k ≤ p − 1, f k t ≤ C e k αt and and R t E[Y x + D k ]d x ≤ C e k αt . Note also, by Jensen inequality, that for all 1 ≤ k ≤ p − 2, f k+v t ≤ f p −1 t k+vp−1 ≤ C e k+vαt . The same argument with p replaced by u which led to 15 in the proof of Lemma 4 leads to the result. ƒ

2.5 Some comments on the birth-and-assassination process

Dokumen yang terkait

AN ALIS IS YU RID IS PUT USAN BE B AS DAL AM P E RKAR A TIND AK P IDA NA P E NY E RTA AN M E L AK U K A N P R AK T IK K E DO K T E RA N YA NG M E N G A K IB ATK AN M ATINYA P AS IE N ( PUT USA N N O MOR: 9 0/PID.B /2011/ PN.MD O)

0 82 16

ANALISIS FAKTOR YANGMEMPENGARUHI FERTILITAS PASANGAN USIA SUBUR DI DESA SEMBORO KECAMATAN SEMBORO KABUPATEN JEMBER TAHUN 2011

2 53 20

EFEKTIVITAS PENDIDIKAN KESEHATAN TENTANG PERTOLONGAN PERTAMA PADA KECELAKAAN (P3K) TERHADAP SIKAP MASYARAKAT DALAM PENANGANAN KORBAN KECELAKAAN LALU LINTAS (Studi Di Wilayah RT 05 RW 04 Kelurahan Sukun Kota Malang)

45 393 31

FAKTOR – FAKTOR YANG MEMPENGARUHI PENYERAPAN TENAGA KERJA INDUSTRI PENGOLAHAN BESAR DAN MENENGAH PADA TINGKAT KABUPATEN / KOTA DI JAWA TIMUR TAHUN 2006 - 2011

1 35 26

A DISCOURSE ANALYSIS ON “SPA: REGAIN BALANCE OF YOUR INNER AND OUTER BEAUTY” IN THE JAKARTA POST ON 4 MARCH 2011

9 161 13

Pengaruh kualitas aktiva produktif dan non performing financing terhadap return on asset perbankan syariah (Studi Pada 3 Bank Umum Syariah Tahun 2011 – 2014)

6 101 0

Pengaruh pemahaman fiqh muamalat mahasiswa terhadap keputusan membeli produk fashion palsu (study pada mahasiswa angkatan 2011 & 2012 prodi muamalat fakultas syariah dan hukum UIN Syarif Hidayatullah Jakarta)

0 22 0

Pendidikan Agama Islam Untuk Kelas 3 SD Kelas 3 Suyanto Suyoto 2011

4 108 178

ANALISIS NOTA KESEPAHAMAN ANTARA BANK INDONESIA, POLRI, DAN KEJAKSAAN REPUBLIK INDONESIA TAHUN 2011 SEBAGAI MEKANISME PERCEPATAN PENANGANAN TINDAK PIDANA PERBANKAN KHUSUSNYA BANK INDONESIA SEBAGAI PIHAK PELAPOR

1 17 40

KOORDINASI OTORITAS JASA KEUANGAN (OJK) DENGAN LEMBAGA PENJAMIN SIMPANAN (LPS) DAN BANK INDONESIA (BI) DALAM UPAYA PENANGANAN BANK BERMASALAH BERDASARKAN UNDANG-UNDANG RI NOMOR 21 TAHUN 2011 TENTANG OTORITAS JASA KEUANGAN

3 32 52