Equation 9.6 is The matrix to be evaluated is The LU decomposition can be computed as

86 2 2 2 1 2 1 1 n n n n i n i − = − = ∑ − = Back substitution is the same as for Gauss elimination: n 2 2 – n2 subtractions and n 2 2 + n2 multiplicationsdivisions. The entire number of flops can be summarized as MultDiv AddSubtr Total Forward elimination 3 3 3 n n − 6 2 3 2 3 n n n + − 6 2 3 2 2 3 n n n − − Forward substitution 2 2 2 n n − 2 2 2 n n − n n − 2 Back substitution 2 2 2 n n + 2 2 2 n n − 2 n Total 3 3 2 3 n n n − + 6 5 2 3 2 3 n n n − + 6 7 2 3 3 2 2 3 n n n − + The total number of flops is identical to that obtained with standard Gauss elimination.

9.2 Equation 9.6 is

{ } } { } ]{ [ } { } ]{ [ ] [ b x A d x U L − = − 9.6 Matrix multiplication is distributive, so the left-hand side can be rewritten as } { } ]{ [ } ]{ [ } ]{ ][ [ b x A d L x U L − = − Equating the terms that are multiplied by {x} yields, } ]{ [ } ]{ ][ [ x A x U L = and, therefore, Eq. 9.7 follows ] [ ] ][ [ A U L = 9.7 Equating the constant terms yields Eq. 9.8 } { } ]{ [ b d L = 9.8

9.3 The matrix to be evaluated is

⎥ ⎥ ⎦ ⎤ ⎢ ⎢ ⎣ ⎡ − − − 5 1 1 2 6 3 1 2 10 Multiply the first row by f 21 = –310 = –0.3 and subtract the result from the second row to eliminate the a 21 term. Then, multiply the first row by f 31 = 110 = 0.1 and subtract the result from the third row to eliminate the a 31 term. The result is 87 ⎥ ⎥ ⎦ ⎤ ⎢ ⎢ ⎣ ⎡ − − 1 . 5 8 . 7 . 1 4 . 5 1 2 10 Multiply the second row by f 32 = 0.8–5.4 = –0.148148 and subtract the result from the third row to eliminate the a 32 term. ⎥ ⎥ ⎦ ⎤ ⎢ ⎢ ⎣ ⎡ − − 351852 . 5 7 . 1 4 . 5 1 2 10 Therefore, the LU decomposition is ⎥ ⎥ ⎦ ⎤ ⎢ ⎢ ⎣ ⎡ − − ⎥ ⎥ ⎦ ⎤ ⎢ ⎢ ⎣ ⎡ − − = 351852 . 5 7 . 1 4 . 5 1 2 10 1 148148 . 1 . 1 3 . 1 ] ]{ [ U L Multiplying [L] and [U] yields the original matrix as verified by the following MATLAB session, L = [1 0 0;-0.3 1 0;0.1 -0.148148 1]; U = [10 2 -1;0 -5.4 1.7;0 0 5.351852]; A = LU A = 10.0000 2.0000 -1.0000 -3.0000 -6.0000 2.0000 1.0000 1.0000 5.0000

9.4 The LU decomposition can be computed as

⎥ ⎥ ⎦ ⎤ ⎢ ⎢ ⎣ ⎡ − − ⎥ ⎥ ⎦ ⎤ ⎢ ⎢ ⎣ ⎡ − − = 351852 . 5 7 . 1 4 . 5 1 2 10 1 148148 . 1 . 1 3 . 1 ] ]{ [ U L Forward substitution: ⎪⎭ ⎪ ⎬ ⎫ ⎪⎩ ⎪ ⎨ ⎧ − − ⎥ ⎥ ⎦ ⎤ ⎢ ⎢ ⎣ ⎡ − − = 5 . 21 5 . 61 27 1 148148 . 1 . 1 3 . 1 } {d 27 1 = d 4 . 53 27 3 . 5 . 61 2 − = + − = d 11111 . 32 4 . 53 148148 . 27 1 . 5 . 21 3 − = − − − − − = d Back substitution: 88 ⎪⎭ ⎪ ⎬ ⎫ ⎪⎩ ⎪ ⎨ ⎧ − − = ⎪⎭ ⎪ ⎬ ⎫ ⎪⎩ ⎪ ⎨ ⎧ ⎥ ⎥ ⎦ ⎤ ⎢ ⎢ ⎣ ⎡ − − = 11111 . 32 5 . 53 27 351852 . 5 7 . 1 4 . 5 1 2 10 } { 3 2 1 x x x x 6 351852 . 5 11111 . 32 3 − = − = x 8 4 . 5 6 7 . 1 4 . 53 2 = − − − − = x 5 . 10 6 1 8 2 27 1 = − − − − = x For the alternative right-hand-side vector, forward substitution is implemented as ⎪⎭ ⎪ ⎬ ⎫ ⎪⎩ ⎪ ⎨ ⎧ − ⎥ ⎥ ⎦ ⎤ ⎢ ⎢ ⎣ ⎡ − − = 6 18 12 1 148148 . 1 . 1 3 . 1 } {d 12 1 = d 6 . 21 12 3 . 18 2 = + = d 4 18 148148 . 12 1 . 6 3 − = − − − − = d Back substitution: ⎪⎭ ⎪ ⎬ ⎫ ⎪⎩ ⎪ ⎨ ⎧ − ⎥ ⎥ ⎦ ⎤ ⎢ ⎢ ⎣ ⎡ − − = 4 6 . 21 12 351852 . 5 7 . 1 4 . 5 1 2 10 } {x 747405 . 351852 . 5 4 3 − = − = x 235294 . 4 4 . 5 747405 . 7 . 1 6 . 21 2 − = − − − = x 972318 . 1 10 747405 . 1 235294 . 4 2 12 1 = − − − − − = x

9.5 The system can be written in matrix form as