a The analytical solution can be evaluated as a The analytical solution can be evaluated as a The analytical solution can be evaluated as

168 CHAPTER 16 16.1 A table of integrals can be consulted to determine ax a dx cosh ln 1 tanh = ∫ Therefore, t d d d t d d t m gc gc m c gm dt t m gc c gm cosh ln tanh ⎥ ⎥ ⎦ ⎤ ⎢ ⎢ ⎣ ⎡ ⎟ ⎟ ⎠ ⎞ ⎜ ⎜ ⎝ ⎛ = ⎟ ⎟ ⎠ ⎞ ⎜ ⎜ ⎝ ⎛ ∫ ⎥ ⎥ ⎦ ⎤ ⎢ ⎢ ⎣ ⎡ − ⎟ ⎟ ⎠ ⎞ ⎜ ⎜ ⎝ ⎛ cosh0 ln cosh ln 2 2 t m gc gc gm d d Since cosh0 = 1 and ln1 = 0, this reduces to ⎟ ⎟ ⎠ ⎞ ⎜ ⎜ ⎝ ⎛ t m gc c m d d cosh ln

16.2 a The analytical solution can be evaluated as

[ ] 1 3.50016773 5 . 5 . 4 5 . 1 2 4 2 4 2 4 2 = − − + = + = − − − − − ∫ e e e x dx e x x b single application of the trapezoidal rule 88 . 42 99329 . 1 2 999665 . 4 = = + − t ε c composite trapezoidal rule n = 2: 35 . 15 96303 . 2 4 999665 . 981684 . 2 4 = = + + − t ε n = 4: 47 . 4 3437 . 3 8 999665 . 99752 . 981684 . 86466 . 2 4 = = + + + + − t ε d single application of Simpson’s 13 rule 169 17 . 6 28427 . 3 6 999665 . 981684 . 4 4 = = + + − t ε e composite Simpson’s 13 rule n = 4 84 . 47059 . 3 12 999665 . 981684 . 2 99752 . 86466 . 4 4 = = + + + + − t ε f Simpson’s 38 rule. 19 . 3 388365 . 3 8 999665 . 995172 . 930517 . 3 4 = = + + + − t ε

16.3 a The analytical solution can be evaluated as

[ ] 12.424778 sin 3 6 2 sin 3 2 6 sin 3 6 cos 3 6 2 2 = − − + = + = + ∫ π π π π x x dx x b single application of the trapezoidal rule 18 . 5 78097 . 11 2 6 9 2 = = + ⎟ ⎠ ⎞ ⎜ ⎝ ⎛ − t ε π c composite trapezoidal rule n = 2: 25 . 1 26896 . 12 4 6 12132 . 8 2 9 2 = = + + ⎟ ⎠ ⎞ ⎜ ⎝ ⎛ − t ε π n = 4: 3111 . 386125 . 12 8 6 14805 . 7 12132 . 8 77164 . 8 2 9 2 = = + + + + ⎟ ⎠ ⎞ ⎜ ⎝ ⎛ − t ε π d single application of Simpson’s 13 rule 0550 . 4316 . 12 6 6 12132 . 8 4 9 2 = = + + ⎟ ⎠ ⎞ ⎜ ⎝ ⎛ − t ε π e composite Simpson’s 13 rule n = 4 0032 . 42518 . 12 12 6 12132 . 8 2 14805 . 7 7716 . 8 4 9 2 = = + + + + ⎟ ⎠ ⎞ ⎜ ⎝ ⎛ − t ε π f Simpson’s 38 rule. 170 0243 . 42779 . 12 8 6 5 . 7 59808 . 8 3 9 2 = = + + + ⎟ ⎠ ⎞ ⎜ ⎝ ⎛ − t ε π

16.4 a The analytical solution can be evaluated as

1104 3 2 2 2 2 2 3 4 4 2 4 4 3 2 2 4 1 6 4 2 6 4 2 4 2 6 4 2 4 2 5 3 = − − − + − + − − + − − = ⎥ ⎦ ⎤ ⎢ ⎣ ⎡ + − − = + − − − − ∫ x x x x dx x x x b single application of the trapezoidal rule 3 . 378 5280 2 1789 29 2 4 = = + − − − t ε c composite trapezoidal rule n = 2: 6 . 138 2634 4 1789 2 2 29 2 4 = = + − + − − − t ε n = 4: 4 . 37 875 . 1516 8 1789 3125 . 131 2 9375 . 1 2 29 2 4 = = + + − + + − − − t ε d single application of Simpson’s 13 rule 7 . 58 1752 6 1789 2 4 29 2 4 = = + − + − − − t ε e composite Simpson’s 13 rule n = 4 6685 . 3 5 . 1144 12 1789 2 2 3125 . 131 9375 . 1 4 29 2 4 = = + − + + + − − − t ε f Simpson’s 38 rule. 09 . 26 1392 8 1789 31 1 3 29 2 4 = = + + + − − − t ε g Boole’s rule. 1104 90 1789 7 3125 . 131 32 2 12 9375 . 1 32 29 7 2 4 = = + + − + + − − − t ε 171

16.5 a