The mass balances can be written and the result written in matrix form as The problem can be written in matrix form as

97 ⎥ ⎥ ⎦ ⎤ ⎢ ⎢ ⎣ ⎡ − − − − − = − 029491 . 053619 . 16622 . 029491 . 013405 . 0.115282 - ] [ 1 A Finally, the same procedures can be implemented with {b} T = ⎣ ⎦ 1 to solve for {d} T = ⎣ ⎦ 1 , and the results are used with [U] to determine {x} by back substitution to generate the third column of the matrix inverse, ⎥ ⎥ ⎦ ⎤ ⎢ ⎢ ⎣ ⎡ − − − − − − − = − 123324 . 029491 . 053619 . 032172 . 16622 . 029491 . 034853 . 013405 . 0.115282 - ] [ 1 A

10.3 The following solution is generated with MATLAB.

a A = [15 -3 -1;-3 18 -6;-4 -1 12]; format long AI = invA AI = 0.07253886010363 0.01278065630397 0.01243523316062 0.02072538860104 0.06079447322971 0.03212435233161 0.02590673575130 0.00932642487047 0.09015544041451 b b = [3800 1200 2350]; format short c = AIb c = 320.2073 227.2021 321.5026 c The impact of a load to reactor 3 on the concentration of reactor 1 is specified by the element 1 13 − a = 0.0124352. Therefore, the increase in the mass input to reactor 3 needed to induce a 10 gm 3 rise in the concentration of reactor 1 can be computed as d g 1667 . 804 0124352 . 10 3 = = ∆b d The decrease in the concentration of the third reactor will be 3 3 m g 285 . 15 3316 . 2 9534 . 12 250 009326 . 500 0259067 . = + = + = ∆c

10.4 The mass balances can be written and the result written in matrix form as

98 ⎪ ⎪ ⎭ ⎪⎪ ⎬ ⎫ ⎪ ⎪ ⎩ ⎪⎪ ⎨ ⎧ = ⎪ ⎪ ⎭ ⎪ ⎪ ⎬ ⎫ ⎪ ⎪ ⎩ ⎪ ⎪ ⎨ ⎧ ⎥ ⎥ ⎥ ⎥ ⎦ ⎤ ⎢ ⎢ ⎢ ⎢ ⎣ ⎡ − − − − − − − − 4 1 3 2 11 8 1 9 1 3 3 1 6 03 03 01 01 5 4 3 2 1 c Q c Q c c c c c MATLAB can then be used to determine the matrix inverse Q = [6 0 -1 0 0;-3 3 0 0 0;0 -1 9 0 0;0 -1 -8 11 -2;-3 -1 0 0 4]; invQ ans = 0.1698 0.0063 0.0189 0 0 0.1698 0.3396 0.0189 0 0 0.0189 0.0377 0.1132 0 0 0.0600 0.0746 0.0875 0.0909 0.0455 0.1698 0.0896 0.0189 0 0.2500 The concentration in reactor 5 can be computed using the elements of the matrix inverse as in, 528 . 24 547 . 7 981 . 16 50 8 0189 . 20 5 1698 . 03 03 1 53 01 01 1 51 5 = + = + = + = − − c Q a c Q a c

10.5 The problem can be written in matrix form as

⎪ ⎪ ⎪ ⎭ ⎪ ⎪ ⎪ ⎬ ⎫ ⎪ ⎪ ⎪ ⎩ ⎪ ⎪ ⎪ ⎨ ⎧ = ⎪ ⎪ ⎪ ⎭ ⎪⎪ ⎪ ⎬ ⎫ ⎪ ⎪ ⎪ ⎩ ⎪⎪ ⎪ ⎨ ⎧ ⎥ ⎥ ⎥ ⎥ ⎥ ⎦ ⎤ ⎢ ⎢ ⎢ ⎢ ⎢ ⎣ ⎡ − − − − − − − − v h v h v h F F F F F F V V H F F F , 3 , 3 , 2 , 2 , 1 , 1 3 2 2 3 2 1 1 866 . 5 . 1 1 5 . 1 1 866 . 866 . 5 . 5 . 866 . MATLAB can then be used to solve for the matrix inverse, A = [0.866 0 -0.5 0 0 0; 0.5 0 0.866 0 0 0; -0.866 -1 0 -1 0 0; -0.5 0 0 0 -1 0; 0 1 0.5 0 0 0; 0 0 -0.866 0 0 -1]; AI = invA AI = 0.8660 0.5000 0 0 0 0 0.2500 -0.4330 0 0 1.0000 0 -0.5000 0.8660 0 0 0 0 -1.0000 0.0000 -1.0000 0 -1.0000 0 -0.4330 -0.2500 0 -1.0000 0 0 0.4330 -0.7500 0 0 0 -1.0000 99 The forces in the members resulting from the two forces can be computed using the elements of the matrix inverse as in, 1000 1000 500 2000 5 . , 3 1 15 , 1 1 12 1 − = + − = − + − = + = − − h v F a F a F 366 500 866 500 1 2000 433 . , 3 1 25 , 1 1 22 2 = − = − + − − = + = − − h v F a F a F 1732 1732 500 2000 866 . , 3 1 35 , 1 1 32 3 − = + − = − + − = + = − − h v F a F a F 10.6 The matrix can be scaled by dividing each row by the element with the largest absolute value A = [8-10 2-10 1;1 1-9 3-9;1 -115 615] A = -0.8000 -0.2000 1.0000 1.0000 -0.1111 -0.3333 1.0000 -0.0667 0.4000 MATLAB can then be used to determine each of the norms, normA,fro ans = 1.9920 normA,1 ans = 2.8000 normA,inf ans = 2

10.7 Prob. 10.2: