a Euler’s method: The second-order van der Pol equation can be reexpressed as a system of 2 first-order

193

18.7 a Euler’s method:

t y z dydt dzdt 0 2 4 16 -16 0.1 3.6 2.4 3.658049 -10.368 0.2 3.965805 1.3632 -2.35114 -3.68486 0.3 3.730691 0.994714 -3.77687 -1.84568 0.4 3.353004 0.810147 -3.99072 -1.10035 1 2 3 4 5

0.1 0.2

0.3 0.4

y z b 4 th -order RK method: 16 4 5 2 2 4 , 2 , 1 1 , 1 = + − = = − e f k 16 2 4 2 4 , 2 , 2 2 2 , 1 − = − = = f k 2 . 3 05 . 16 4 05 . 8 . 2 05 . 16 2 05 . = − = = + = z y 194 336 . 14 2 2 . 3 8 . 2 2 . 3 , 8 . 2 , 05 . 619671 . 9 2 . 3 5 8 . 2 2 2 . 3 , 8 . 2 , 05 . 2 2 2 , 2 05 . 1 1 , 2 − = − = = = + − = = − f k e f k 2832 . 3 05 . 336 . 14 4 05 . 480984 . 2 05 . 619671 . 9 2 05 . = − = = + = z y 3718 . 13 2 2832 . 3 480984 . 2 2832 . 3 , 480984 . 2 , 05 . 65342 . 10 2832 . 3 5 480984 . 2 2 2832 . 3 , 480984 . 2 , 05 . 2 2 2 , 3 05 . 1 1 , 3 − = − = = = + − = = − f k e f k 662824 . 2 1 . 3718 . 13 4 1 . 065342 . 3 1 . 65342 . 10 2 1 . = − = = + = z y 8676 . 10 2 662824 . 2 065342 . 3 662824 . 2 , 065342 . 3 , 1 . 916431 . 5 2832 . 3 5 065342 . 3 2 662824 . 2 , 065342 . 3 , 1 . 2 2 2 , 4 1 . 1 1 , 4 − = − = = = + − = = − f k e f k The k’s can then be used to compute the increment functions, 7139 . 13 6 8676 . 10 3718 . 13 336 . 14 2 16 41043 . 10 6 916431 . 5 65342 . 10 619671 . 9 2 16 2 1 − = − − − + − = = + + + = φ φ These slope estimates can then be used to make the prediction for the first step 2.628615 1 . 7139 . 13 4 1 . 3.041043 1 . 41043 . 10 2 1 . = − = = + = z y The remaining steps can be taken in a similar fashion and the results summarized as t y z 0 2 4 0.1 3.041043 2.628615 0.2 3.342571 1.845308 0.3 3.301983 1.410581 0.4 3.107758 1.149986 A plot of these values can be developed. 195 1 2 3 4 5

0.1 0.2

0.3 0.4

y z

18.8 The second-order van der Pol equation can be reexpressed as a system of 2 first-order

ODEs, y z y dt dz z dt dy − − = = 1 2 a Euler h = 0.2. Here are the first few steps. The remainder of the computation would be implemented in a similar fashion and the results displayed in the plot below. t y h = 0.2 z h = 0.2 dydt dzdt 0 1 1 1 -1 0.2 1.2 0.8 0.8 -1.552 0.4 1.36 0.4896 0.4896 -1.77596 0.6 1.45792 0.1344072 0.134407 -1.6092 0.8 1.4848014 -0.187433 -0.18743 -1.25901 b Euler h = 0.1. Here are the first few steps. The remainder of the computation would be implemented in a similar fashion and the results displayed in the plot below. t y h = 0.1 z h = 0.1 dydt dzdt 0 1 1 1 -1 0.1 1.1 0.9 0.9 -1.289 0.2 1.19 0.7711 0.7711 -1.51085 0.3 1.26711 0.6200145 0.620015 -1.64257 0.4 1.3291115 0.4557574 0.455757 -1.67847 196 -4 -3 -2 -1 1 2 3 4 2 4 6 8 10 y h = 0.1 z h = 0.1 y h = 0.2 z h = 0.2

18.9 The second-order equation can be reexpressed as a system of two first-order ODEs,