a For this case, x

22 a Using 3-digits with chopping 1.37 3 → 2.571353 → 2.57 –71.37 2 → –71.87 → –13.0 81.37 → 10.96 → 10.9 – 0.35 –0.12 This represents an error of 7 . 178 043053 . 12 . 043053 . = − = t ε b Using 3-digits with chopping 35 . 37 . 1 8 37 . 1 7 37 . 1 − + − = y 35 . 37 . 1 8 37 . 1 63 . 5 − + × − = y 35 . 37 . 1 8 71 . 7 − + − = y 35 . 37 . 1 29 . − × = y 35 . 397 . − = y 047 . = y This represents an error of 2 . 9 043053 . 47 . 043053 . = − = t ε Hence, the second form is superior because it tends to minimize round-off error.

4.3 a For this case, x

i = 0 and h = x. Thus, the Taylor series is ⋅ ⋅ ⋅ + + = + 3 + 2 3 3 2 x f x f x f f x f For the exponential function, 1 3 = = = = f f f f Substituting these values yields, 23 ⋅ ⋅ ⋅ + + = + 3 1 + 2 1 1 3 2 x x x x f which is the Maclaurin series expansion. b The true value is e –1 = 0.367879 and the step size is h = x i+1 – x i = 1 – 0.25 = 0.75. The complete Taylor series to the third-order term is 3 2 3 2 1 h e h e h e e x f i i i i x x x x i − − − − + − + − = Zero-order approximation: 778801 . 1 25 . = = − e f 7 . 111 100 367879 . 778801 . 367879 . = − = t ε First-order approximation: 1947 . 75 . 778801 . 778801 . 1 = − = f 1 . 47 100 367879 . 1947 . 367879 . = − = t ε Second-order approximation: 413738 . 2 75 . 778801 . 75 . 778801 . 778801 . 1 2 = + − = f 5 . 12 100 367879 . 413738 . 367879 . = − = t ε Third-order approximation: 358978 . 6 75 . 778801 . 2 75 . 778801 . 75 . 778801 . 778801 . 1 3 2 = − + − = f 42 . 2 100 367879 . 358978 . 367879 . = − = t ε 4.4 Use ε s = 0.5 ×10 2–2 = 0.5. The true value = cos π4 = 0.707107… zero-order: 24 1 4 cos ≅ ⎟ ⎠ ⎞ ⎜ ⎝ ⎛ π 42 . 41 100 707107 . 1 707107 . = − = t ε first-order: 691575 . 2 4 1 4 cos 2 = − ≅ ⎟ ⎠ ⎞ ⎜ ⎝ ⎛ π π 6 . 44 100 691575 . 1 691575 . 19 . 2 100 707107 . 691575 . 707107 . = − = = − = a t ε ε second-order: 707429 . 24 4 691575 . 4 cos 4 = + ≅ ⎟ ⎠ ⎞ ⎜ ⎝ ⎛ π π 24 . 2 100 707429 . 691575 . 707429 . 456 . 100 707107 . 707429 . 707107 . = − = = − = a t ε ε third-order: 707103 . 720 4 707429 . 4 cos 6 = − ≅ ⎟ ⎠ ⎞ ⎜ ⎝ ⎛ π π 046 . 100 707103 . 707429 . 707103 . 0005 . 100 707107 . 707103 . 707107 . = − = = − = a t ε ε Because ε a 0.5, we can terminate the computation. 4.5 Use ε s = 0.5 ×10 2–2 = 0.5. The true value = sin π4 = 0.707107… zero-order: 25 785398 . 4 sin ≅ ⎟ ⎠ ⎞ ⎜ ⎝ ⎛ π 1 . 11 100 707107 . 785398 . 707107 . = − = t ε first-order: 704653 . 6 4 785398 . 4 sin 3 = − ≅ ⎟ ⎠ ⎞ ⎜ ⎝ ⎛ π π 46 . 11 100 704653 . 785398 . 704653 . 347 . 100 707107 . 704653 . 707107 . = − = = − = a t ε ε second-order: 707143 . 120 4 704653 . 4 sin 5 = + ≅ ⎟ ⎠ ⎞ ⎜ ⎝ ⎛ π π 352 . 100 707143 . 704653 . 707143 . 0051 . 100 707107 . 707143 . 707107 . = − = = − = a t ε ε Because ε a 0.5, we can terminate the computation. 4.6 The true value is f2 = 102. zero order: 8 . 160 100 102 62 102 62 1 2 = − − = − = = t f f ε first order: 1 . 92 100 102 8 102 8 1 70 62 2 70 7 1 12 1 75 1 2 = − = = + − = = + − = t f f ε second order: 26 5 . 24 100 102 77 102 77 1 2 138 8 2 138 12 1 150 1 2 = − = = + = = − = t f f ε third order: . 100 102 102 102 102 1 6 150 77 2 150 1 3 3 = − = = + = = t f f ε Because we are working with a third-order polynomial, the error is zero. This is due to the fact that cubics have zero fourth and higher derivatives.

4.7 The true value is ln3 = 1.098612