a Terms can be combined to yield The mass balances can be written as

70 CHAPTER 7 7.1 Aug = [A eyesizeA] Here’s an example session of how it can be employed. A = rand3 A = 0.9501 0.4860 0.4565 0.2311 0.8913 0.0185 0.6068 0.7621 0.8214 Aug = [A eyesizeA] Aug = 0.9501 0.4860 0.4565 1.0000 0 0 0.2311 0.8913 0.0185 0 1.0000 0 0.6068 0.7621 0.8214 0 0 1.0000

7.2 a

[A]: 3 × 2 [B]: 3 × 3 {C}: 3 × 1 [D]: 2 × 4 [E]: 3 × 3 [F]: 2 × 3 ⎣G⎦: 1 × 3 b square: [B], [E]; column: {C}, row: ⎣G⎦ c a 12 = 5, b 23 = 6, d 32 = undefined, e 22 = 1, f 12 = 0, g 12 = 6 d MATLAB can be used to perform the operations 1 ⎥ ⎥ ⎦ ⎤ ⎢ ⎢ ⎣ ⎡ = + 9 5 9 3 8 13 8 5 ] [ ] [ B E 2 ⎥ ⎥ ⎦ ⎤ ⎢ ⎢ ⎣ ⎡ − − − − = − 1 3 3 1 6 1 2 3 ] [ ] [ B E 3 [A] + [F] = undefined 4 ⎥ ⎥ ⎦ ⎤ ⎢ ⎢ ⎣ ⎡ = 20 5 30 10 5 35 15 20 ] [ 5 F 5 [A] × [B] = undefined 6 ⎥ ⎥ ⎦ ⎤ ⎢ ⎢ ⎣ ⎡ = × 29 24 45 36 68 54 ] [ ] [ A B 7 [G] × [C] = 56 8 ⎣ ⎦ 1 6 2 ] [ = T C 9 ⎥ ⎥ ⎥ ⎦ ⎤ ⎢ ⎢ ⎢ ⎣ ⎡ = 5 6 7 3 1 4 2 5 ] [ T D 10 ⎥ ⎥ ⎦ ⎤ ⎢ ⎢ ⎣ ⎡ = × 4 1 6 2 1 7 3 4 ] [B I 7.3 The terms can be collected to give 71 ⎪⎭ ⎪ ⎬ ⎫ ⎪⎩ ⎪ ⎨ ⎧ − = ⎪⎭ ⎪ ⎬ ⎫ ⎪⎩ ⎪ ⎨ ⎧ ⎥ ⎥ ⎦ ⎤ ⎢ ⎢ ⎣ ⎡ − − − 40 30 10 7 3 4 7 4 3 7 3 2 1 x x x Here is the MATLAB session: A = [-7 3 0;0 4 7;-4 3 -7]; b = [10;-30;40]; x = A\b x = -1.0811 0.8108 -4.7490 AT = A AT = -7 0 -4 3 4 3 0 7 -7 AI = invA AI = -0.1892 0.0811 0.0811 -0.1081 0.1892 0.1892 0.0618 0.0347 -0.1081 7.4 ⎥ ⎥ ⎦ ⎤ ⎢ ⎢ ⎣ ⎡ − − = × 24 17 56 55 8 23 ] [ ] [ Y X ⎥ ⎥ ⎦ ⎤ ⎢ ⎢ ⎣ ⎡ − − = × 2 23 52 30 8 12 ] [ ] [ Z X ⎥⎦ ⎤ ⎢⎣ ⎡ − = × 34 47 8 4 ] [ ] [ Z Y ⎥⎦ ⎤ ⎢⎣ ⎡ − = × 32 20 16 6 ] [ ] [ Y Z

7.5 Terms can be combined to yield

72 g m kx kx g m kx kx kx g m kx kx 3 3 2 2 3 2 1 1 2 1 2 2 = + − = − + − = − Substituting the parameter values ⎪⎭ ⎪ ⎬ ⎫ ⎪⎩ ⎪ ⎨ ⎧ = ⎪⎭ ⎪ ⎬ ⎫ ⎪⎩ ⎪ ⎨ ⎧ ⎥ ⎥ ⎦ ⎤ ⎢ ⎢ ⎣ ⎡ − − − − 525 . 24 43 . 29 62 . 19 10 10 10 20 10 10 20 3 2 1 x x x A MATLAB session can be used to obtain the solution for the displacements K=[20 -10 0;-10 20 -10;0 -10 10]; m=[2;3;2.5]; mg=m9.81; x=K\mg x = 7.3575 12.7530 15.2055

7.6 The mass balances can be written as

5 55 54 2 25 1 15 5 54 4 44 3 34 2 24 03 03 3 34 31 2 23 2 25 24 23 1 12 01 01 3 31 1 12 15 = + + − − = − + − − = + + − = + + + − = − + c Q Q c Q c Q c Q c Q c Q c Q c Q c Q Q c Q c Q Q Q c Q c Q c Q c Q Q The parameters can be substituted and the result written in matrix form as ⎪ ⎪ ⎭ ⎪⎪ ⎬ ⎫ ⎪ ⎪ ⎩ ⎪⎪ ⎨ ⎧ = ⎪ ⎪ ⎭ ⎪ ⎪ ⎬ ⎫ ⎪ ⎪ ⎩ ⎪ ⎪ ⎨ ⎧ ⎥ ⎥ ⎥ ⎥ ⎦ ⎤ ⎢ ⎢ ⎢ ⎢ ⎣ ⎡ − − − − − − − − 160 50 4 1 3 2 11 8 1 9 1 3 3 1 6 5 4 3 2 1 c c c c c MATLAB can then be used to solve for the concentrations Q = [6 0 -1 0 0; -3 3 0 0 0; 0 -1 9 0 0; 0 -1 -8 11 -2; -3 -1 0 0 4]; Qc = [50;0;160;0;0]; 73 c = Q\Qc c = 11.5094 11.5094 19.0566 16.9983 11.5094

7.7 The problem can be written in matrix form as