a Pivoting is necessary, so switch the first and third rows, Multiply the first equation by –0.40.8 and subtract the result from the second equation to The mass balances can be written as

81 5 . 21 6 5 8 5 . 5 . 61 6 2 8 6 5 . 3 27 6 8 2 5 . 10 − = − + + − = − + − − = − − +

8.8 a Pivoting is necessary, so switch the first and third rows,

38 6 2 34 7 3 20 2 8 3 2 1 3 2 1 3 2 1 − = − − − = + − − − = − + − x x x x x x x x x Multiply the first equation by –3–8 and subtract the result from the second equation to eliminate the a 21 term from the second equation. Then, multiply the first equation by 2–8 and subtract the result from the third equation to eliminate the a 31 term from the third equation. 43 5 . 1 75 . 5 5 . 26 75 . 7 375 . 1 20 2 8 3 2 3 2 3 2 1 − = − − − = + − − = − + − x x x x x x x Pivoting is necessary so switch the second and third row, 5 . 26 75 . 7 375 . 1 43 5 . 1 75 . 5 20 2 8 3 2 3 2 3 2 1 − = + − − = − − − = − + − x x x x x x x Multiply pivot row 2 by –1.375–5.75 and subtract the result from the third row to eliminate the a 32 term. 21739 . 16 8.108696 43 5 . 1 75 . 5 20 2 8 3 3 2 3 2 1 − = − = − − − = − + − x x x x x x The solution can then be obtained by back substitution 2 108696 . 8 21739 . 16 3 − = − = x 8 75 . 5 2 5 . 1 43 2 = − − + − = x 82 4 8 8 1 2 2 20 1 = − − − + − = x b Check: 20 2 2 8 4 8 34 2 7 8 4 3 38 2 8 6 4 2 − = − − + − − = − + − − − = − − −

8.9 Multiply the first equation by –0.40.8 and subtract the result from the second equation to

eliminate the x 1 term from the second equation. ⎪⎭ ⎪ ⎬ ⎫ ⎪⎩ ⎪ ⎨ ⎧ = ⎪⎭ ⎪ ⎬ ⎫ ⎪⎩ ⎪ ⎨ ⎧ ⎥ ⎥ ⎦ ⎤ ⎢ ⎢ ⎣ ⎡ − − − 105 5 . 45 41 8 . 4 . 4 . 6 . 4 . 8 . 3 2 1 x x x Multiply pivot row 2 by –0.40.6 and subtract the result from the third row to eliminate the x 2 term. ⎪⎭ ⎪ ⎬ ⎫ ⎪⎩ ⎪ ⎨ ⎧ = ⎪⎭ ⎪ ⎬ ⎫ ⎪⎩ ⎪ ⎨ ⎧ ⎥ ⎥ ⎦ ⎤ ⎢ ⎢ ⎣ ⎡ − − 3333 . 135 5 . 45 41 533333 . 4 . 6 . 4 . 8 . 3 2 1 x x x The solution can then be obtained by back substitution 75 . 253 533333 . 3333 . 135 3 = = x 245 6 . 75 . 253 4 . 5 . 45 2 = − − = x 75 . 173 8 . 245 4 . 41 1 = − − = x b Check: 105 75 . 253 8 . 245 4 . 25 75 . 253 4 . 245 8 . 75 . 173 4 . 41 245 4 . 75 . 173 8 . = + − = − + − = −

8.10 The mass balances can be written as

83 200 400 3 33 2 23 1 13 2 23 2 21 1 12 1 13 1 12 2 21 + = + + = + = + c Q c Q c Q c Q c Q c Q c Q c Q c Q or collecting terms 200 400 3 33 2 23 1 13 2 23 21 1 12 2 21 1 13 12 = + − − = + + − = − + c Q c Q c Q c Q Q c Q c Q c Q Q Substituting the values for the flows and expressing in matrix form ⎪⎭ ⎪ ⎬ ⎫ ⎪⎩ ⎪ ⎨ ⎧ = ⎪⎭ ⎪ ⎬ ⎫ ⎪⎩ ⎪ ⎨ ⎧ ⎥ ⎥ ⎦ ⎤ ⎢ ⎢ ⎣ ⎡ − − − − 200 400 120 60 40 80 80 20 120 3 2 1 c c c A solution can be obtained with MATLAB as A = [120 -20 0;-80 80 0;-40 -60 120]; b = [400 0 200]; c = a\b c = 4.0000 4.0000 5.0000

8.11 Equations for the amount of sand, fine gravel and coarse gravel can be written as