49
6.3 a
x = linspace0,4; y = x.3-6x.2+11x-6.1;
plotx,y grid
Estimates are approximately 1.05, 1.9 and 3.05. b
The formula for Newton-Raphson is
11 12
3 1
. 6
11 6
2 2
3 1
+ −
− +
− −
=
+ i
i i
i i
i i
x x
x x
x x
x Using an initial guess of 3.5, the first iteration yields
191304 .
3 11
5 .
3 12
5 .
3 3
1 .
6 5
. 3
11 5
. 3
6 5
. 3
5 .
3
2 2
3 1
= +
− −
+ −
− =
x
673 .
9 100
191304 .
3 5
. 3
191304 .
3 =
× −
=
a
ε
Second iteration:
068699 .
3 11
191304 .
3 12
191304 .
3 3
1 .
6 191304
. 3
11 191304
. 3
6 191304
. 3
191304 .
3
2 2
3 2
= +
− −
+ −
− =
x
995 .
3 100
068699 .
3 191304
. 3
068699 .
3 =
× −
=
a
ε
50 Third iteration:
047317 .
3 11
068699 .
3 12
068699 .
3 3
1 .
6 068699
. 3
11 068699
. 3
6 068699
. 3
068699 .
3
2 2
3 3
= +
− −
+ −
− =
x
702 .
100 047317
. 3
068699 .
3 047317
. 3
= ×
− =
a
ε
c
For the secant method, the first iteration: x
−1
= 2.5 fx
−1
= −0.475
x = 3.5
fx = 1.775
711111 .
2 775
. 1
475 .
5 .
3 5
. 2
775 .
1 5
. 3
1
= −
− −
− =
x
098 .
29 100
711111 .
2 5
. 3
711111 .
2 =
× −
=
a
ε
Second iteration: x
= 3.5 fx
= 1.775 x
1
= 2.711111 fx
1
= −0.45152
871091 .
2 45152
. 775
. 1
711111 .
2 5
. 3
45152 .
711111 .
2
2
= −
− −
− −
= x
572 .
5 100
871091 .
2 711111
. 2
871091 .
2 =
× −
=
a
ε
Third iteration: x
1
= 2.711111 fx
1
= −0.45152
x
2
= 2.871091 fx
2
= −0.31011
221923 .
3 31011
. 45152
. 871091
. 2
711111 .
2 31011
. 871091
. 2
3
= −
− −
− −
− =
x
889 .
10 100
221923 .
3 871091
. 2
221923 .
3 =
× −
=
a
ε
d
For the modified secant method, the first iteration: x
= 3.5 fx
= 1.775 x
+
δ
x = 3.57
fx +
δ
x = 2.199893
51 207573
. 3
775 .
1 199893
. 2
775 .
1 5
. 3
02 .
5 .
3
1
= −
− =
x
117 .
9 100
207573 .
3 5
. 3
207573 .
3 =
× −
=
a
ε
Second iteration: x
1
= 3.207573 fx
1
= 0.453351 x
1
+
δ
x
1
= 3.271725 fx
1
+
δ
x
1
= 0.685016 082034
. 3
453351 .
685016 .
453351 .
207573 .
3 02
. 207573
. 3
2
= −
− =
x
073 .
4 100
082034 .
3 207573
. 3
082034 .
3 =
× −
=
a
ε
Third iteration: x
2
= 3.082034 fx
2
= 0.084809 x
2
+
δ
x
2
= 3.143675 fx
2
+
δ
x
2
= 0.252242 050812
. 3
084809 .
252242 .
084809 .
082034 .
3 02
. 082034
. 3
3
= −
− =
x
023 .
1 100
050812 .
3 082034
. 3
050812 .
3 =
× −
=
a
ε
e a = [1 -6 11 -6.1]
a = 1.0000 -6.0000 11.0000 -6.1000
rootsa ans =
3.0467 1.8990
1.0544
6.4 a
x = linspace0,4; y = 7sinx.exp-x-1;
plotx,y grid
52 The lowest positive root seems to be at approximately 0.2.
b
The formula for Newton-Raphson is
sin cos
7 1
sin 7
1 i
i x
x i
i i
x x
e e
x x
x
i i
− −
− =
− −
+
Using an initial guess of 3.5, the first iteration yields
144376 .
421627 .
3 532487
. 3
. 3
. sin
3 .
cos 7
1 3
. sin
7 3
.
3 .
3 .
1
= −
= −
− −
=
− −
e e
x
8 .
107 100
144376 .
3 .
144376 .
= ×
− =
a
ε
Second iteration:
169409 .
124168 .
5 12827
. 144376
. 144376
. sin
144376 .
cos 7
1 144376
. sin
7 144376
.
144376 .
144376 .
2
= −
− =
− −
− =
− −
e e
x
776 .
14 100
169409 .
144376 .
169409 .
= ×
− =
a
ε
Third iteration:
170179 .
828278 .
4 00372
. 169409
. 169409
. sin
169409 .
cos 7
1 169409
. sin
7 169409
.
169409 .
169409 .
1
= −
− =
− −
− =
− −
e e
x
53 453
. 100
170179 .
169409 .
170179 .
= ×
− =
a
ε
c
For the secant method, the first iteration: x
−1
= 0.4 fx
−1
= 0.827244 x
= 0.3 fx
= 0.532487 119347
. 532487
. 827244
. 3
. 4
. 532487
. 3
.
1
= −
− −
= x
4 .
151 100
119347 .
3 .
119347 .
= ×
− =
a
ε
Second iteration: x
= 0.3 fx
= 0.532487 x
1
= 0.119347 fx
1
= −0.26032
178664 .
26032 .
532487 .
119347 .
3 .
26032 .
119347 .
2
= −
− −
− −
= x
2 .
33 100
178664 .
119347 .
178664 .
= ×
− =
a
ε
Third iteration: x
1
= 0.119347 fx
1
= −0.26032
x
2
= 0.178664 fx
2
= 0.04047 170683
. 04047
. 26032
. 178664
. 119347
. 04047
. 178664
.
3
= −
− −
− =
x
68 .
4 100
170683 .
178664 .
170683 .
= ×
− =
a
ε
d
For the modified secant method, the first iteration: x
= 0.3 fx
= 0.532487 x
+
δ
x = 0.303 fx
+
δ
x = 0.542708
143698 .
532487 .
542708 .
532487 .
3 .
01 .
3 .
1
= −
− =
x
8 .
108 100
143698 .
3 .
143698 .
= ×
− =
a
ε
54 Second iteration:
x
1
= 0.143 698 fx
1
= −0.13175
x
1
+
δ
x
1
= 0.145135 fx
1
+
δ
x
1
= −0.12439
169412 .
13175 .
12439 .
13175 .
143698 .
02 .
143698 .
2
= −
− −
− −
= x
18 .
15 100
169412 .
143698 .
169412 .
= ×
− =
a
ε
Third iteration: x
2
= 0.169412 fx
2
= −0.00371
x
2
+
δ
x
2
= 0.171106 fx
2
+
δ
x
2
= 0.004456 170181
. 00371
. 004456
. 00371
. 169412
. 02
. 169412
.
3
= −
− −
− =
x
452 .
100 170181
. 169412
. 170181
. =
× −
=
a
ε
6.5 a The formula for Newton-Raphson is