a The first two steps are 2.3 The first two steps yield a a

5

1.5 a The first two steps are

BqL 8 . 9 1 . 10 2 . 10 1 . = − = c BqL 604 . 9 1 . 8 . 9 2 . 8 . 9 2 . = − = c The process can be continued to yield t c dcdt 0 10.0000 -2.0000 0.1 9.8000 -1.9600 0.2 9.6040 -1.9208 0.3 9.4119 -1.8824 0.4 9.2237 -1.8447 0.5 9.0392 -1.8078 0.6 8.8584 -1.7717 0.7 8.6813 -1.7363 0.8 8.5076 -1.7015 0.9 8.3375 -1.6675 1 8.1707 -1.6341 b The results when plotted on a semi-log plot yields a straight line 2 2.1

2.2 2.3

2.4

0.2 0.4

0.6 0.8

1 The slope of this line can be estimated as 20203 . 1 10 ln 1707 . 8 ln − = − Thus, the slope is approximately equal to the negative of the decay rate.

1.6 The first two steps yield

[ ] 16667 . 5 . 33333 . 5 . 1200 400 sin 1200 400 3 5 . 2 − = − + = ⎥⎦ ⎤ ⎢⎣ ⎡ − + = y [ ] 21841 . 5 . 333333 . 5 . sin 16667 . 1 2 − = − + − = y 6 The process can be continued to give t y 0 0 0.5 -0.16667 1 -0.21841 1.5 -0.03104 2 0.299793 2.5 0.546537 3 0.558955 3.5 0.402245 4 0.297103 4.5 0.416811 5 0.727927 -0.4 0.4 0.8 1 2 3 4 5 y 1.7 1 t m c e c gm t v ⎟ ⎠ ⎞ ⎜ ⎝ ⎛ − − = jumper 1: s m e t v 87 . 44 1 5 . 12 1 . 68 8 . 9 10 1 . 68 5 . 12 = − = ⎟ ⎠ ⎞ ⎜ ⎝ ⎛ − jumper 2: 1 14 75 8 . 9 87 . 44 75 14 t e ⎟ ⎠ ⎞ ⎜ ⎝ ⎛ − − = t e 18666 . 5 . 52 5 . 52 87 . 44 − − = t e 18666 . 14533 . − = t e 18666 . ln 14533 . ln − = t = 10.33 sec 1.8 Q in = Q out Q 1 = Q 2 + Q 3 7 30 = 20 + vA 3 10 = 5 A 3 A 3 = 2 m 2 1.9 = ∑ − ∑ out in M M [ ] [ ] 350 200 1400 200 400 50 MP 1200 1000 = + + + + − + + + Metabolic production = 300 grams 1.10 ∑ = 60 t body weigh 60 5 . 1 5 . 4 12 5 . 4 5 . 4 = + + + + + IW Intracellular water body weight = 33 60 5 . 1 5 . 4 12 5 . 4 5 . 4 = + + + + + IW ∑ = 100 body water 100 55 5 . 7 20 5 . 7 5 . 7 = + + + + + TW Transcellular water of body water = 2.5 8 CHAPTER 2 2.1 q0 = 10;R = 50;L = 5;C = 1e-4; t = linspace0,.5; q = q0exp-Rt2L.cossqrt1LC-R2L2t; plott,q 2.2 z = linspace-3,3; f = 1sqrt2piexp-z.22; plotz,f xlabelz ylabelfrequency

2.3 a

t = linspace5,30,6 9 t = 5 10 15 20 25 30 b x = linspace-3,3,7 x = -3 -2 -1 0 1 2 3

2.4 a

v = -2:.75:1 v = -2.0000 -1.2500 -0.5000 0.2500 1.0000 b r = 6:-1:0 r = 6 5 4 3 2 1 0 2.5 F = [10 12 15 9 12 16]; x = [0.013 0.020 0.009 0.010 0.012 0.010]; k = F.x k = 1.0e+003 0.7692 0.6000 1.6667 0.9000 1.0000 1.6000 U = .5k.x.2 U = 0.0650 0.1200 0.0675 0.0450 0.0720 0.0800 maxU ans = 0.1200 2.6 TF = 32:3.6:93.2; TC = 59TF-32; rho = 5.5289e-8TC.3-8.5016e-6TC.2+6.5622e-5TC+0.99987; plotTC,rho 10 2.7 A = [.035 .0001 10 2; .02 .0002 8 1; .015 .001 20 1.5; .03 .0007 24 3; .022 .0003 15 2.5] A = 0.0350 0.0001 10.0000 2.0000 0.0200 0.0002 8.0000 1.0000 0.0150 0.0010 20.0000 1.5000 0.0300 0.0007 24.0000 3.0000 0.0220 0.0003 15.0000 2.5000 U = sqrtA:,2.A:,1.A:,3.A:,4.A:,3+2A:,4.23 U = 0.3624 0.6094 2.5167 1.5809 1.1971 2.8 t = 10:10:60; c = [3.4 2.6 1.6 1.3 1.0 0.5]; tf = 0:70; cf = 4.84exp-0.034tf; plott,c,s,tf,cf,-- 11 2.9 t = 10:10:60; c = [3.4 2.6 1.6 1.3 1.0 0.5]; tf = 0:70; cf = 4.84exp-0.034tf; semilogyt,c,s,tf,cf,-- 2.10 v = 10:10:80; F = [25 70 380 550 610 1220 830 1450]; vf = 0:100; Ff = 0.2741vf.1.9842; plotv,F,d,vf,Ff,: 12 2.11 v = 10:10:80; F = [25 70 380 550 610 1220 830 1450]; vf = 0:100; Ff = 0.2741vf.1.9842; loglogv,F,d,vf,Ff,: 2.12 x = linspace0,3pi2; c = cosx; cf = 1-x.22+x.4factorial4-x.6factorial6; plotx,c,x,cf,-- 13 14 CHAPTER 3 3.1 The M-file can be written as function sincompx,n i = 1; tru = sinx; ser = 0; fprintf\n; fprintforder true value approximation error\n; while 1 if i n, break, end ser = ser + -1i - 1 x2i-1 factorial2i-1; er = tru - ser tru 100; fprintf3d 14.10f 14.10f 12.8f\n,i,tru,ser,er; i = i + 1; end This function can be used to evaluate the test case, sincomp1.5,8 order true value approximation error 1 0.9974949866 1.5000000000 -50.37669564 2 0.9974949866 0.9375000000 6.01456523 3 0.9974949866 1.0007812500 -0.32945162 4 0.9974949866 0.9973911830 0.01040643 5 0.9974949866 0.9974971226 -0.00021414 6 0.9974949866 0.9974949557 0.00000310 7 0.9974949866 0.9974949869 -0.00000003 8 0.9974949866 0.9974949866 0.00000000 3.2 The M-file can be written as function futureworthP, i, n nn = 0:n; F = P1+i.nn; y = [nn;F]; fprintf\n year future worth\n; fprintf5d 14.2f\n,y; This function can be used to evaluate the test case, futureworth100000,0.08,8 year future worth 0 100000.00 1 108000.00 2 116640.00 3 125971.20 4 136048.90 5 146932.81 6 158687.43 7 171382.43 8 185093.02 15 3.3 The M-file can be written as function annualpaymentP, i, n nn = 1:n; A = Pi1+i.nn.1+i.nn-1; y = [nn;A]; fprintf\n year annualpayment\n; fprintf5d 14.2f\n,y; This function can be used to evaluate the test case, annualpayment35000,.076,5 year annualpayment 1 37660.00 2 19519.34 3 13483.26 4 10473.30 5 8673.76 3.4 The M-file can be written as function Tavg = avgtempTmean, Tpeak, tstart, tend omega = 2pi365; t = tstart:tend; Te = Tmean + Tpeak-Tmeancosomegat-205; Tavg = meanTe; This function can be used to evaluate the test cases, avgtemp5.2,22.1,0,59 ans = -10.8418 avgtemp23.1,33.6,180,242 ans = 33.0398 3.5 The M-file can be written as function vol = tankvolR, d if d R vol = pi d 3 3; elseif d = 3 R v1 = pi R 3 3; v2 = pi R 2 d - R; vol = v1 + v2; else errorovertop end This function can be used to evaluate the test cases, 16 tankvol1,0.5 ans = 0.1309 tankvol1,1.2 ans = 1.6755 tankvol1,3.0 ans = 7.3304 tankvol1,3.1 ??? Error using == tankvol overtop 3.6 The M-file can be written as function [r, th] = polarx, y r = sqrtx . 2 + y . 2; if x 0 if y 0 th = atany x + pi; elseif y 0 th = atany x - pi; else th = pi; end else if y 0 th = pi 2; elseif y 0 th = -pi 2; else th = 0; end end th = th 180 pi; This function can be used to evaluate the test cases. For example, for the first case, [r,th]=polar1,1 r = 1.4142 th = 90 The remaining cases are 17 x y r θ 1 1 1.4142 90 1 − 1 1.4142 − 90 1 0 1.0000 0 − 1 1 1.4142 135 − 1 − 1 1.4142 − 135 − 1 0 1.0000 180 1 1.0000 90 − 1 1.0000 − 90 0 0.0000 0 3.7 The M-file can be written as function polar2x, y r = sqrtx . 2 + y . 2; n = lengthx; for i = 1:n if xi 0 if yi 0 thi = atanyi xi + pi; elseif yi 0 thi = atanyi xi - pi; else thi = pi; end else if yi 0 thi = pi 2; elseif yi 0 thi = -pi 2; else thi = 0; end end thi = thi 180 pi; end ou = [x;y;r;th]; fprintf\n x y radius angle\n; fprintf8.2f 8.2f 10.4f 10.4f\n,ou; This function can be used to evaluate the test cases and display the results in tabular form, polar2x,y x y radius angle 1.00 1.00 1.4142 90.0000 1.00 -1.00 1.4142 -90.0000 1.00 0.00 1.0000 0.0000 -1.00 1.00 1.4142 135.0000 -1.00 -1.00 1.4142 -135.0000 -1.00 0.00 1.0000 180.0000 0.00 1.00 1.0000 90.0000 0.00 -1.00 1.0000 -90.0000 0.00 0.00 0.0000 0.0000 18 3.8 The M-file can be written as function grade = lettergradescore if score = 90 grade = A; elseif score = 80 grade = B; elseif score = 70 grade = C; elseif score = 60 grade = D; else grade = F; end This function can be tested with a few cases, lettergrade95 ans = A lettergrade45 ans = F lettergrade80 ans = B 3.9 The M-file can be written as function ManningA A:,5 = sqrtA:,2.A:,1.A:,3.A:,4.A:,3+2A:,4.23; fprintf\n n S B H U\n; fprintf8.3f 8.4f 10.2f 10.2f 10.4f\n,A; This function can be run to create the table, ManningA n S B H U 0.035 0.0001 10.00 2.00 0.3624 0.020 0.0002 8.00 1.00 0.6094 0.015 0.0010 20.00 1.50 2.5167 0.030 0.0007 24.00 3.00 1.5809 0.022 0.0003 15.00 2.50 1.1971 19 3.10 The M-file can be written as function beamx xx = linspace0,x; n=lengthxx; for i=1:n uyi = -56.singxxi,0,4-singxxi,5,4; uyi = uyi + 156.singxxi,8,3 + 75singxxi,7,2; uyi = uyi + 576.xxi3 - 238.25.xxi; end plotxx,uy function s = singxxx,a,n if xxx a s = xxx - a.n; else s=0; end This function can be run to create the plot, beam10 3.11 The M-file can be written as function cylinderr, L h = linspace0,2r; V = r2acosr-h.r-r-h.sqrt2rh-h.2L; ploth, V This function can be run to the plot, cylinder2,5 20 21 CHAPTER 4 4.1 The true value can be computed as 911 , 352 , 2 577 . 3 1 577 . 6 22 . 1 2 2 = × − = f Using 3-digits with chopping 004 . 3 1 996 . 3 332 . 332929 . 577 . 46 . 3 462 . 3 577 . 6 6 2 2 chopping 2 chopping = − = ⎯ ⎯ ⎯ → ⎯ = = ⎯ ⎯ ⎯ → ⎯ = = x x x x x 250 , 216 004 . 46 . 3 996 . 1 46 . 3 577 . 2 2 = = − = f This represents a percent relative error of 8 . 90 911 , 352 , 2 250 , 216 911 , 352 , 2 = − = t ε Using 4-digits with chopping 0013 . 3 1 9987 . 3 3329 . 332929 . 577 . 462 . 3 462 . 3 577 . 6 6 2 2 chopping 2 chopping = − = ⎯ ⎯ ⎯ → ⎯ = = ⎯ ⎯ ⎯ → ⎯ = = x x x x x 521 , 048 , 2 0013 . 462 . 3 9987 . 1 462 . 3 577 . 2 2 = = − = f This represents a percent relative error of 9 . 12 911 , 352 , 2 521 , 048 , 2 911 , 352 , 2 = − = t ε Although using more significant digits improves the estimate, the error is still considerable. The problem stems primarily from the fact that we are subtracting two nearly equal numbers in the denominator. Such subtractive cancellation is worsened by the fact that the denominator is squared. 4.2 First, the correct result can be calculated as 043053 . 35 . 37 . 1 8 37 . 1 7 37 . 1 2 3 = − + − = y 22 a Using 3-digits with chopping 1.37 3 → 2.571353 → 2.57 –71.37 2 → –71.87 → –13.0 81.37 → 10.96 → 10.9 – 0.35 –0.12 This represents an error of 7 . 178 043053 . 12 . 043053 . = − = t ε b Using 3-digits with chopping 35 . 37 . 1 8 37 . 1 7 37 . 1 − + − = y 35 . 37 . 1 8 37 . 1 63 . 5 − + × − = y 35 . 37 . 1 8 71 . 7 − + − = y 35 . 37 . 1 29 . − × = y 35 . 397 . − = y 047 . = y This represents an error of 2 . 9 043053 . 47 . 043053 . = − = t ε Hence, the second form is superior because it tends to minimize round-off error.

4.3 a For this case, x