Sebaran normal Nilai Mean Margin of Error dan Uji-
                                                                                DAFTAR PUSTAKA
Agresti A. 2002. Categorical Data Analysis. Second Edition. John Wiley  Son. USA
Billingsley P. 1991. Probability and Measure. New York: John Willey  Sons. Brace  I.  2004.  Questionnaire  design:  how  to  plan,  structure  and  write  survei
material for effective market research. London  Sterling, VA. USA Brase  CH,  Brase  CP.  2009.  Understandable  Statistics:  Concept  and  Methods.
Ninth Edition. BrooksCole. Boston-USA Dunn-Rankin  et  al.  2004.  Scaling  Methods.  Second  Edition.  Lawrence  Erlbaum
Associates, Publisher. New Jersey-USA. Freund  RJ,  Wilson  WJ.  2003.  Statistical  Methods.  Second  Edition.  Elsevier
Science USA. Ghahramani  S.  2005.  Fundamental  of  Probability  dengan  Stochastic  Process.
New Jersey: Pearson Prentice Hall. Grimmet  GR,  Stirzaker  DR.  2001.  Probability  and  Random  Processes.  Ed  ke-3.
Oxford: University Press. Pelosi MK, Sandifer TM. 2003. Elementary Statistics. John Wiley  Sons. USA
Purcell EJ, Varberg D. 1999. Kalkulus dan Geometri Analisis, Ed ke-2. Susila IN, Kartasasmita  B,  Ruwuh,  Terjemahan;  Jakarta:  Erlangga.  Terjemahan  dari:
Calculus With Analytic Geometry, 2
nd
Edition. Pritsker  AA,  O’Reilly  JJ.  1999.  Simulation  with  Visual  Slam  and Awesim. John
Wiley  Sons. USA Ross SM. 2000. Stochastic Process. New York: Macmillan Publishing Company.
Triola MF. 2006. Elementary Statistics. Tenth Edition. Pearson Education, Inc. Walpole  RE.  1993.  Pengantar  Statistika.  Edisi  ke-3.  PT.  Gramedia  Pustaka
Utama. Jakarta.
L A M P I R A N
Lampiran 1. Program Simulasi
kategorimaks=15;q=1000; 1=50;2=50;1=15;2=15;=0.05;
talphaperdua=2.101;
Membangkitkan  bilangan  acak  berdistribusi  normal  dengan  nilai  tengah 
dan simpangan baku .
acak[mu_,sigma_,n_,a_,b_]:=Module[{lis,nd},lis={}; While[Length[lis]n,nd=RandomVariate[NormalDistribution[mu,sigma]];
If[a ndb,lis=Append[lis,nd]]];lis]
Kasus 1. ukuran contoh 10 , menyebar normal. Membangkitkan  populasi  kelompok  1  sebanyak  1000  contoh  bernilai  0
sampai  100  berdistribusi  normal  dengan  nilai  tengah  50  dan  simpangan baku 15.
pt1=q;pt2=q;n1=10;n2=n1;For[i=1,i pt1,i++,contoh1[i]=acak[1,1,n1,0,100]]
For[i=1,i q,i++,{contoh[1,i]=contoh1[i];xmean[1,i]=Mean[contoh[1,i]];
ragam[1,i] = Variance[contoh[1,i]]}] rerata1=Mean[Flatten[Array[xmean,{1,q},{1,1}]]];
sb1=Sqrt[Mean[Flatten[Array[ragam,{1,q},{1,1}]]]]; sbnol1=Count[Flatten[Sqrt[Array[ragam,{1,q},{1,1}]],1],0];
Membangkitkan  populasi  kelompok  2  sebanyak  1000  contoh  bernilai  0 sampai  100  berdistribusi  normal  dengan  nilai  tengah  50  dan  simpangan
baku 15.
For[i=1,i pt2,i++,contoh2[i]=acak[2,2,n2,0,100]]
For[i=1,i q,i++,{contoh[2,i]=contoh2[i];xmean[2,i]=Mean[contoh[2,i]];
ragam[2,i]=Variance[contoh[2,i]]}]; rerata2=N[Mean[Flatten[Array[xmean,{1,q},{2,1}]]]];
sb2=N[Sqrt[Mean[Flatten[Array[ragam,{1,q},{2,1}]]]]]; sbnol2=Count[Flatten[Sqrt[Array[ragam,{1,q},{2,1}]],1],0];
Peluang Nilai P Value data awal  Taraf Nyata
For[i=1,i q,i++,PValue[i]=TTest[{contoh[1,i],contoh[2,i]},1-2,
PValue,SignificanceLevel 0.05,VerifyTestAssumptionsNone,
AlternativeHypothesis Unequal]]
reratapv=Mean[Array[PValue,q]]; For[i=1,i
q,i++,PValue[i]=TTest[{contoh[1,i],contoh[2,i]},1-2, ShortTestConclusion,SignificanceLevel
0.05,VerifyTestAssumptionsNone, AlternativeHypothesis
Unequal]] tolakk=Count[Array[PValue,q],Reject];
terimak=Count[Array[PValue,q],Do not reject];
Melakukan uji nilai tengah  mencari true value
For[i = 1, i = q, i++, {spkontinu[i] = Sqrt[n1 - 1ragam[1, i] + n2 - 1ragam[2, i]n1 + n2 -2];
deltakontinu[i] = N[talphaperduaspkontinu[i] Sqrt[1n1 + 1n2]]; thkontinu[i] =
N[xmean[1, i] - xmean[2, i] - Subscript[ , 1] -
Subscript[ , 2]spkontinu[i]Sqrt[1n1 + 1n2]];
deltarerata[i] = Abs[xmean[1, i] - xmean[2, i]]; batasatas[i] = deltarerata[i] + deltakontinu[i];
batasbawah[i] = deltarerata[i] - deltakontinu[i]; keputusankontinuTrue[i] = If[batasbawah[i]
Subscript[
, 1] - Subscript[, 2]  batasatas[i], True, False]; keputusankontinuFalse[i] =
If[batasbawah[i]  Subscript[ , 1] - Subscript[, 2] ||
Subscript[ , 1] - Subscript[, 2]  batasatas[i],
False, True]}] reratagalat=Mean[Array[deltakontinu,q]];
dalamkontinu=Count[Array[keputusankontinuTrue,q],True]; luarkontinu=Count[Array[keputusankontinuFalse,q],False];
reratathkontinu=Mean[Array[thkontinu,q]]; reratabatasatas=Mean[Array[batasatas,q]];
reratabatasbawah=Mean[Array[batasbawah,q]];
Masing-masing  1000  pasangan  contoh  data  kontinu  dikonversi    ke  data kategori  berukuran  2  sampai  15.  Kemudian  masing-masing  pasangan  data
kategori dilakukan uji nilai tengah.
For[j=1,j 2,j++,For[l=1,lq,l++,For[kategorimin=2,kategoriminkategorimaks,kategorimin++,For
[k=1,k kategorimin,k++,bbkelas[j,l,kategorimin,1]=0]]]]
For[j = 1, j = 2, j++, For[l = 1, l = q, l++, For[kategorimin = 2, kategorimin = kategorimaks, kategorimin++, For[k = 1, k = kategorimin, k++, selisih[j, l,
kategorimin, k] = N[100kategorimin, 4]]]]]; For[j=1,j
2,j++,For[l=1,lq,l++,For[kategorimin=2,kategoriminkategorimaks,kategorimin++,For [k=1,k
kategorimin,k++,{bakelas[j,l,kategorimin,k]=bbkelas[j,l,kategorimin,k]+selisih[j,l,kategori min,k]+0.0005,bbkelas[j,l,kategorimin,k+1]=bakelas[j,l,kategorimin,k]}]]]];
For[j=1,j 2,j++,For[l=1,lq,l++,For[kategorimin=2,kategoriminkategorimaks,kategorimin++,For
[k=1,k kategorimin,k++,fkelas[j,l,kategorimin,k]=Length[Select[contoh[j,l],bbkelas[j,l,kategorimi
n,k]  bakelas[j,l,kategorimin,k]]]]]]]
For[j = 1, j = 2, j++, For[l = 1, l = q, l++, For[kategorimin = 2, kategorimin = kategorimaks, kategorimin++, jumlahfkelas[j, l, kategorimin] = Sum[fkelas[j,
l, kategorimin, k], {k, 1, kategorimin}]]]] For[j=1,j
2,j++,For[l=1,lq,l++,For[kategorimin=2,kategoriminkategorimaks,kategorimin++,For [k=1,k
kategorimin,k++,xtengah[j,l,kategorimin,k]=12 bbkelas[j,l,kategorimin,k]+bakelas[j,l,kategorimin,k]]]]]
For[j = 1, j = 2, j++, For[l = 1, l = q, l++, For[kategorimin = 2, kategorimin = kategorimaks, kategorimin++, For[k = 1, k = kategorimin, k++,xmean[j, l,
kategorimin] = N[Sum[xtengah[j, l, kategorimin, p]fkelas[j, l, kategorimin, p],
{p, 1, kategorimin}]Sum[fkelas[j, l, kategorimin, p], {p, 1, kategorimin}]]]]]]
For[j = 1, j = 2, j++, For[l = 1, l = q, l++, For[kategorimin = 2, kategorimin = kategorimaks, kategorimin++, For[k = 1, k = kategorimin, k++,{ragam[j, l,
kategorimin] = N[1Sum[fkelas[j, l, kategorimin, p], {p, 1, kategorimin}] - 1
Sum[fkelas[j, l, kategorimin, p]xtengah[j, l, kategorimin, p] - xmean[j, l, kategorimin]2, {p, 1, kategorimin}]]}]]]]
For[j=1,j
2,j++,For[l=1,lq,l++,For[kategorimin=2,kategoriminkategorimaks,
                                            
                