Saran SIMPULAN DAN SARAN
                                                                                deltakontinu[i] = N[talphaperduaspkontinu[i] Sqrt[1n1 + 1n2]]; thkontinu[i] =
N[xmean[1, i] - xmean[2, i] - Subscript[ , 1] -
Subscript[ , 2]spkontinu[i]Sqrt[1n1 + 1n2]];
deltarerata[i] = Abs[xmean[1, i] - xmean[2, i]]; batasatas[i] = deltarerata[i] + deltakontinu[i];
batasbawah[i] = deltarerata[i] - deltakontinu[i]; keputusankontinuTrue[i] = If[batasbawah[i]
Subscript[
, 1] - Subscript[, 2]  batasatas[i], True, False]; keputusankontinuFalse[i] =
If[batasbawah[i]  Subscript[ , 1] - Subscript[, 2] ||
Subscript[ , 1] - Subscript[, 2]  batasatas[i],
False, True]}] reratagalat=Mean[Array[deltakontinu,q]];
dalamkontinu=Count[Array[keputusankontinuTrue,q],True]; luarkontinu=Count[Array[keputusankontinuFalse,q],False];
reratathkontinu=Mean[Array[thkontinu,q]]; reratabatasatas=Mean[Array[batasatas,q]];
reratabatasbawah=Mean[Array[batasbawah,q]];
Masing-masing  1000  pasangan  contoh  data  kontinu  dikonversi    ke  data kategori  berukuran  2  sampai  15.  Kemudian  masing-masing  pasangan  data
kategori dilakukan uji nilai tengah.
For[j=1,j 2,j++,For[l=1,lq,l++,For[kategorimin=2,kategoriminkategorimaks,kategorimin++,For
[k=1,k kategorimin,k++,bbkelas[j,l,kategorimin,1]=0]]]]
For[j = 1, j = 2, j++, For[l = 1, l = q, l++, For[kategorimin = 2, kategorimin = kategorimaks, kategorimin++, For[k = 1, k = kategorimin, k++, selisih[j, l,
kategorimin, k] = N[100kategorimin, 4]]]]]; For[j=1,j
2,j++,For[l=1,lq,l++,For[kategorimin=2,kategoriminkategorimaks,kategorimin++,For [k=1,k
kategorimin,k++,{bakelas[j,l,kategorimin,k]=bbkelas[j,l,kategorimin,k]+selisih[j,l,kategori min,k]+0.0005,bbkelas[j,l,kategorimin,k+1]=bakelas[j,l,kategorimin,k]}]]]];
For[j=1,j 2,j++,For[l=1,lq,l++,For[kategorimin=2,kategoriminkategorimaks,kategorimin++,For
[k=1,k kategorimin,k++,fkelas[j,l,kategorimin,k]=Length[Select[contoh[j,l],bbkelas[j,l,kategorimi
n,k]  bakelas[j,l,kategorimin,k]]]]]]]
For[j = 1, j = 2, j++, For[l = 1, l = q, l++, For[kategorimin = 2, kategorimin = kategorimaks, kategorimin++, jumlahfkelas[j, l, kategorimin] = Sum[fkelas[j,
l, kategorimin, k], {k, 1, kategorimin}]]]] For[j=1,j
2,j++,For[l=1,lq,l++,For[kategorimin=2,kategoriminkategorimaks,kategorimin++,For [k=1,k
kategorimin,k++,xtengah[j,l,kategorimin,k]=12 bbkelas[j,l,kategorimin,k]+bakelas[j,l,kategorimin,k]]]]]
For[j = 1, j = 2, j++, For[l = 1, l = q, l++, For[kategorimin = 2, kategorimin = kategorimaks, kategorimin++, For[k = 1, k = kategorimin, k++,xmean[j, l,
kategorimin] = N[Sum[xtengah[j, l, kategorimin, p]fkelas[j, l, kategorimin, p],
{p, 1, kategorimin}]Sum[fkelas[j, l, kategorimin, p], {p, 1, kategorimin}]]]]]]
For[j = 1, j = 2, j++, For[l = 1, l = q, l++, For[kategorimin = 2, kategorimin = kategorimaks, kategorimin++, For[k = 1, k = kategorimin, k++,{ragam[j, l,
kategorimin] = N[1Sum[fkelas[j, l, kategorimin, p], {p, 1, kategorimin}] - 1
Sum[fkelas[j, l, kategorimin, p]xtengah[j, l, kategorimin, p] - xmean[j, l, kategorimin]2, {p, 1, kategorimin}]]}]]]]
For[j=1,j
2,j++,For[l=1,lq,l++,For[kategorimin=2,kategoriminkategorimaks,
kategorimin++,For[k=1,k kategorimin,k++,datakat[j,l,kategorimin,k]={xtengah[j,l,kategorimin,k]
,fkelas[j,l,kategorimin,k]}]]]] datakl=Array[datakat,{2,q,kategorimaks-1,kategorimin-1},{1,1,2,1}];
For[j=1,j 2,j++,For[l=1,lq,l++,For[i=2,ikategorimaks,i++,datakl1[j,l,i]=
Take[datakl[[j]][[l]][[i-1]],i]]]]
2 kategori dari q contoh
For[j=1,j 2,j++,For[l=1,lq,l++,contoh[j,l,2]=Flatten[Append[ConstantArray
[datakl1[j,l,2][[1]][[1]],datakl1[j,l,2][[1]][[2]]],ConstantArray [datakl1[j,l,2][[2]][[1]],datakl1[j,l,2][[2]][[2]]]]]]]
3 kategori dari q contoh
For[j=1,j 2,j++,For[l=1,lq,l++,contoh[j,l,3]=Flatten[Append[{ConstantArray
[datakl1[j,l,3][[1]][[1]],datakl1[j,l,3][[1]][[2]]],ConstantArray [datakl1[j,l,3][[2]][[1]],datakl1[j,l,3][[2]][[2]]]},ConstantArray
[datakl1[j,l,3][[3]][[1]],datakl1[j,l,3][[3]][[2]]]]]]]
4 kategori dari q contoh
For[j=1,j 2,j++,For[l=1,lq,l++,contoh[j,l,4]=Flatten[Append[{{ConstantArray[datakl1[j,l,4][[1]]
[[1]],datakl1[j,l,4][[1]][[2]]],ConstantArray [datakl1[j,l,4][[2]][[1]],datakl1[j,l,4][[2]][[2]]]},ConstantArray[datakl1[j,l,4][[3]][[1]],datakl1[j,l,4
][[3]][[2]]]},ConstantArray[datakl1[j,l,4][[4]][[1]], datakl1[j,l,4][[4]][[2]]]]]]]
5 kategori dari q contoh
For[j=1,j 2,j++,For[l=1,lq,l++,contoh[j,l,5]=Flatten[Append[{{{ConstantArray[datakl1[j,l,5][[1]
][[1]],datakl1[j,l,5][[1]][[2]]],ConstantArray [datakl1[j,l,5][[2]][[1]],datakl1[j,l,5][[2]][[2]]]},ConstantArray
[datakl1[j,l,5][[3]][[1]],datakl1[j,l,5][[3]][[2]]]},ConstantArray [datakl1[j,l,5][[4]][[1]],datakl1[j,l,5][[4]][[2]]]},ConstantArray
[datakl1[j,l,5][[5]][[1]],datakl1[j,l,5][[5]][[2]]]]]]]
6 kategori dari q contoh
For[j=1,j 2,j++,For[l=1,lq,l++,contoh[j,l,6]=Flatten[Append[{{{{
ConstantArray[datakl1[j,l,6][[1]][[1]],datakl1[j,l,6][[1]][[2]]],ConstantArray [datakl1[j,l,6][[2]][[1]],datakl1[j,l,6][[2]][[2]]]},ConstantArray
[datakl1[j,l,6][[3]][[1]],datakl1[j,l,6][[3]][[2]]]},ConstantArray [datakl1[j,l,6][[4]][[1]],datakl1[j,l,6][[4]][[2]]]},ConstantArray
[datakl1[j,l,6][[5]][[1]],datakl1[j,l,6][[5]][[2]]]},ConstantArray [datakl1[j,l,6][[6]][[1]],datakl1[j,l,6][[6]][[2]]]]]]]
7 kategori dari q contoh
For[j=1,j 2,j++,For[l=1,lq,l++,contoh[j,l,7]=Flatten[Append[{{{{{
ConstantArray[datakl1[j,l,7][[1]][[1]],datakl1[j,l,7][[1]][[2]]],ConstantArray [datakl1[j,l,7][[2]][[1]],datakl1[j,l,7][[2]][[2]]]},ConstantArray
[datakl1[j,l,7][[3]][[1]],datakl1[j,l,7][[3]][[2]]]},ConstantArray [datakl1[j,l,7][[4]][[1]],datakl1[j,l,7][[4]][[2]]]},ConstantArray
[datakl1[j,l,7][[5]][[1]],datakl1[j,l,7][[5]][[2]]]},ConstantArray
[datakl1[j,l,7][[6]][[1]],datakl1[j,l,7][[6]][[2]]]},ConstantArray [datakl1[j,l,7][[7]][[1]],datakl1[j,l,7][[7]][[2]]]]]]]
8 kategori dari q contoh
For[j=1,j 2,j++,For[l=1,lq,l++,contoh[j,l,8]=Flatten[Append[{{{{{{
ConstantArray[datakl1[j,l,8][[1]][[1]],datakl1[j,l,8][[1]][[2]]],ConstantArray [datakl1[j,l,8][[2]][[1]],datakl1[j,l,8][[2]][[2]]]},ConstantArray
[datakl1[j,l,8][[3]][[1]],datakl1[j,l,8][[3]][[2]]]},ConstantArray [datakl1[j,l,8][[4]][[1]],datakl1[j,l,8][[4]][[2]]]},ConstantArray
[datakl1[j,l,8][[5]][[1]],datakl1[j,l,8][[5]][[2]]]},ConstantArray [datakl1[j,l,8][[6]][[1]],datakl1[j,l,8][[6]][[2]]]},ConstantArray
[datakl1[j,l,8][[7]][[1]],datakl1[j,l,8][[7]][[2]]]},ConstantArray [datakl1[j,l,8][[8]][[1]],datakl1[j,l,8][[8]][[2]]]]]]]
9 kategori dari q contoh
For[j=1,j 2,j++,For[l=1,lq,l++,contoh[j,l,9]=Flatten[Append[{{{{{{{
ConstantArray[datakl1[j,l,9][[1]][[1]],datakl1[j,l,9][[1]][[2]]],ConstantArray [datakl1[j,l,9][[2]][[1]],datakl1[j,l,9][[2]][[2]]]},ConstantArray
[datakl1[j,l,9][[3]][[1]],datakl1[j,l,9][[3]][[2]]]},ConstantArray [datakl1[j,l,9][[4]][[1]],datakl1[j,l,9][[4]][[2]]]},ConstantArray
[datakl1[j,l,9][[5]][[1]],datakl1[j,l,9][[5]][[2]]]},ConstantArray [datakl1[j,l,9][[6]][[1]],datakl1[j,l,9][[6]][[2]]]},ConstantArray
[datakl1[j,l,9][[7]][[1]],datakl1[j,l,9][[7]][[2]]]},ConstantArray [datakl1[j,l,9][[8]][[1]],datakl1[j,l,9][[8]][[2]]]},ConstantArray
[datakl1[j,l,9][[9]][[1]],datakl1[j,l,9][[9]][[2]]]]]]]
10 kategori dari q contoh
For[j=1,j 2,j++,For[l=1,lq,l++,contoh[j,l,10]=Flatten[Append[{{{{{{{{
ConstantArray[datakl1[j,l,10][[1]][[1]],datakl1[j,l,10][[1]][[2]]],ConstantArray [datakl1[j,l,10][[2]][[1]],datakl1[j,l,10][[2]][[2]]]},ConstantArray
[datakl1[j,l,10][[3]][[1]],datakl1[j,l,10][[3]][[2]]]},ConstantArray [datakl1[j,l,10][[4]][[1]],datakl1[j,l,10][[4]][[2]]]},ConstantArray
[datakl1[j,l,10][[5]][[1]],datakl1[j,l,10][[5]][[2]]]},ConstantArray [datakl1[j,l,10][[6]][[1]],datakl1[j,l,10][[6]][[2]]]},ConstantArray
[datakl1[j,l,10][[7]][[1]],datakl1[j,l,10][[7]][[2]]]},ConstantArray [datakl1[j,l,10][[8]][[1]],datakl1[j,l,10][[8]][[2]]]},ConstantArray
[datakl1[j,l,10][[9]][[1]],datakl1[j,l,10][[9]][[2]]]},ConstantArray [datakl1[j,l,10][[10]][[1]],datakl1[j,l,10][[10]][[2]]]]]]]
11 kategori dari q contoh
For[j=1,j 2,j++,For[l=1,lq,l++,contoh[j,l,11]=Flatten[Append[{{{{{{{{{
ConstantArray[datakl1[j,l,11][[1]][[1]],datakl1[j,l,11][[1]][[2]]],ConstantArray [datakl1[j,l,11][[2]][[1]],datakl1[j,l,11][[2]][[2]]]},ConstantArray
[datakl1[j,l,11][[3]][[1]],datakl1[j,l,11][[3]][[2]]]},ConstantArray [datakl1[j,l,11][[4]][[1]],datakl1[j,l,11][[4]][[2]]]},ConstantArray
[datakl1[j,l,11][[5]][[1]],datakl1[j,l,11][[5]][[2]]]},ConstantArray [datakl1[j,l,11][[6]][[1]],datakl1[j,l,11][[6]][[2]]]},ConstantArray
[datakl1[j,l,11][[7]][[1]],datakl1[j,l,11][[7]][[2]]]},ConstantArray [datakl1[j,l,11][[8]][[1]],datakl1[j,l,11][[8]][[2]]]},ConstantArray
[datakl1[j,l,11][[9]][[1]],datakl1[j,l,11][[9]][[2]]]},ConstantArray [datakl1[j,l,11][[10]][[1]],datakl1[j,l,11][[10]][[2]]]},ConstantArray
[datakl1[j,l,11][[11]][[1]],datakl1[j,l,11][[11]][[2]]]]]]]
12 kategori dari q contoh
For[j=1,j 2,j++,For[l=1,lq,l++,contoh[j,l,12]=Flatten[Append[{{{{{{{{{{
ConstantArray[datakl1[j,l,12][[1]][[1]],datakl1[j,l,12][[1]][[2]]],ConstantArray [datakl1[j,l,12][[2]][[1]],datakl1[j,l,12][[2]][[2]]]},ConstantArray
[datakl1[j,l,12][[3]][[1]],datakl1[j,l,12][[3]][[2]]]},ConstantArray [datakl1[j,l,12][[4]][[1]],datakl1[j,l,12][[4]][[2]]]},ConstantArray
[datakl1[j,l,12][[5]][[1]],datakl1[j,l,12][[5]][[2]]]},ConstantArray [datakl1[j,l,12][[6]][[1]],datakl1[j,l,12][[6]][[2]]]},ConstantArray
[datakl1[j,l,12][[7]][[1]],datakl1[j,l,12][[7]][[2]]]},ConstantArray [datakl1[j,l,12][[8]][[1]],datakl1[j,l,12][[8]][[2]]]},ConstantArray
[datakl1[j,l,12][[9]][[1]],datakl1[j,l,12][[9]][[2]]]},ConstantArray [datakl1[j,l,12][[10]][[1]],datakl1[j,l,12][[10]][[2]]]},ConstantArray
[datakl1[j,l,12][[11]][[1]],datakl1[j,l,12][[11]][[2]]]},ConstantArray [datakl1[j,l,12][[12]][[1]],datakl1[j,l,12][[12]][[2]]]]]]]
13 kategori dari q contoh
For[j=1,j 2,j++,For[l=1,lq,l++,contoh[j,l,13]=Flatten[Append[{{{{{{{{{{{
ConstantArray[datakl1[j,l,13][[1]][[1]],datakl1[j,l,13][[1]][[2]]],ConstantArray [datakl1[j,l,13][[2]][[1]],datakl1[j,l,13][[2]][[2]]]},ConstantArray
[datakl1[j,l,13][[3]][[1]],datakl1[j,l,13][[3]][[2]]]},ConstantArray [datakl1[j,l,13][[4]][[1]],datakl1[j,l,13][[4]][[2]]]},ConstantArray
[datakl1[j,l,13][[5]][[1]],datakl1[j,l,13][[5]][[2]]]},ConstantArray [datakl1[j,l,13][[6]][[1]],datakl1[j,l,13][[6]][[2]]]},ConstantArray
[datakl1[j,l,13][[7]][[1]],datakl1[j,l,13][[7]][[2]]]},ConstantArray [datakl1[j,l,13][[8]][[1]],datakl1[j,l,13][[8]][[2]]]},ConstantArray
[datakl1[j,l,13][[9]][[1]],datakl1[j,l,13][[9]][[2]]]},ConstantArray [datakl1[j,l,13][[10]][[1]],datakl1[j,l,13][[10]][[2]]]},ConstantArray
[datakl1[j,l,13][[11]][[1]],datakl1[j,l,13][[11]][[2]]]},ConstantArray [datakl1[j,l,13][[12]][[1]],datakl1[j,l,13][[12]][[2]]]},ConstantArray
[datakl1[j,l,13][[13]][[1]],datakl1[j,l,13][[13]][[2]]]]]]]
14 kategori dari q contoh
For[j=1,j 2,j++,For[l=1,lq,l++,contoh[j,l,14]=Flatten[Append[{{{{{{{{{{{{
ConstantArray[datakl1[j,l,14][[1]][[1]],datakl1[j,l,14][[1]][[2]]],ConstantArray [datakl1[j,l,14][[2]][[1]],datakl1[j,l,14][[2]][[2]]]},ConstantArray
[datakl1[j,l,14][[3]][[1]],datakl1[j,l,14][[3]][[2]]]},ConstantArray [datakl1[j,l,14][[4]][[1]],datakl1[j,l,14][[4]][[2]]]},ConstantArray
[datakl1[j,l,14][[5]][[1]],datakl1[j,l,14][[5]][[2]]]},ConstantArray [datakl1[j,l,14][[6]][[1]],datakl1[j,l,14][[6]][[2]]]},ConstantArray
[datakl1[j,l,14][[7]][[1]],datakl1[j,l,14][[7]][[2]]]},ConstantArray [datakl1[j,l,14][[8]][[1]],datakl1[j,l,14][[8]][[2]]]},ConstantArray
[datakl1[j,l,14][[9]][[1]],datakl1[j,l,14][[9]][[2]]]},ConstantArray [datakl1[j,l,14][[10]][[1]],datakl1[j,l,14][[10]][[2]]]},ConstantArray
[datakl1[j,l,14][[11]][[1]],datakl1[j,l,14][[11]][[2]]]},ConstantArray [datakl1[j,l,14][[12]][[1]],datakl1[j,l,14][[12]][[2]]]},ConstantArray
[datakl1[j,l,14][[13]][[1]],datakl1[j,l,14][[13]][[2]]]},ConstantArray [datakl1[j,l,14][[13]][[1]],datakl1[j,l,14][[14]][[2]]]]]]]
15 kategori dari q contoh
For[j=1,j 2,j++,For[l=1,lq,l++,contoh[j,l,15]=Flatten[Append[{{{{{{{{{{{{{
ConstantArray[datakl1[j,l,15][[1]][[1]],datakl1[j,l,15][[1]][[2]]],ConstantArray [datakl1[j,l,15][[2]][[1]],datakl1[j,l,15][[2]][[2]]]},ConstantArray
[datakl1[j,l,15][[3]][[1]],datakl1[j,l,15][[3]][[2]]]},ConstantArray [datakl1[j,l,15][[4]][[1]],datakl1[j,l,15][[4]][[2]]]},ConstantArray
[datakl1[j,l,15][[5]][[1]],datakl1[j,l,15][[5]][[2]]]},ConstantArray [datakl1[j,l,15][[6]][[1]],datakl1[j,l,15][[6]][[2]]]},ConstantArray
[datakl1[j,l,15][[7]][[1]],datakl1[j,l,15][[7]][[2]]]},ConstantArray [datakl1[j,l,15][[8]][[1]],datakl1[j,l,15][[8]][[2]]]},ConstantArray
[datakl1[j,l,15][[9]][[1]],datakl1[j,l,15][[9]][[2]]]},ConstantArray [datakl1[j,l,15][[10]][[1]],datakl1[j,l,15][[10]][[2]]]},ConstantArray
[datakl1[j,l,15][[11]][[1]],datakl1[j,l,15][[11]][[2]]]},ConstantArray [datakl1[j,l,15][[12]][[1]],datakl1[j,l,15][[12]][[2]]]},ConstantArray
[datakl1[j,l,15][[13]][[1]],datakl1[j,l,15][[13]][[2]]]},ConstantArray [datakl1[j,l,15][[13]][[1]],datakl1[j,l,15][[14]][[2]]]},ConstantArray
[datakl1[j,l,15][[13]][[1]],datakl1[j,l,15][[15]][[2]]]]]]]
Posisi Contoh dengan Ragam Nol
For[i=1,i q,i++,ragam21[i]=Variance[contoh[1,i,2]]];For[i=1,iq,i++,ragam31[i]=Variance[conto
h[1,i,3]]];For[i=1,i q,i++,ragam41[i]=Variance[contoh[1,i,4]]];
For[i=1,i q,i++,ragam51[i]=Variance[contoh[1,i,5]]];For[i=1,iq,i++,ragam61[i]=Variance[conto
h[1,i,6]]];For[i=1,i q,i++,ragam71[i]=Variance[contoh[1,i,7]]];
For[i=1,i q,i++,ragam81[i]=Variance[contoh[1,i,8]]];For[i=1,iq,i++,ragam91[i]=Variance[conto
h[1,i,9]]];For[i=1,i q,i++,ragam101[i]=Variance
[contoh[1,i,10]]];For[i=1,i q,i++,ragam111[i]=Variance[contoh[1,i,11]]];For[i=1,iq,i++,ragam12
1[i]=Variance[contoh[1,i,12]]];For[i=1,i q,i++,
ragam131[i]=Variance[contoh[1,i,13]]];For[i=1,i q,i++,ragam141[i]=
Variance[contoh[1,i,14]]]; For[i=1,i
q,i++,ragam151[i]=Variance[contoh[1,i,15]]]; For[i=1,i
q,i++,ragam22[i]=Variance[contoh[2,i,2]]];For[i=1,iq,i++, ragam32[i]=Variance[contoh[2,i,3]]];For[i=1,i
q,i++,ragam42[i]=Variance [contoh[2,i,4]]];For[i=1,i
q,i++,ragam52[i]=Variance[contoh[2,i,5]]]; For[i=1,i
q,i++,ragam62[i]=Variance[contoh[2,i,6]]];For[i=1,iq,i++,ragam72[i]=Variance[conto h[2,i,7]]];For[i=1,i
q,i++,ragam82[i]=Variance[contoh[2,i,8]]]; For[i=1,i
q,i++,ragam92[i]=Variance[contoh[2,i,9]]];For[i=1,iq,i++, ragam102[i]=Variance[contoh[2,i,10]]];For[i=1,i
q,i++,ragam112[i]=Variance [contoh[2,i,11]]];For[i=1,i
q,i++,ragam122[i]=Variance[contoh[2,i,12]]]; For[i=1,i
q,i++,ragam132[i]=Variance[contoh[2,i,13]]];For[i=1,iq,i++, ragam142[i]=Variance[contoh[2,i,14]]];For[i=1,i
q,i++,ragam152[i]= Variance[contoh[2,i,15]]];
rg12=Array[ragam21,q];rg13=Array[ragam31,q];rg14=Array[ragam41,q];rg15= Array[ragam51,q];rg16=Array[ragam61,q];rg17=Array[ragam71,q];rg18=Array
[ragam81,q];rg19=Array[ragam91,q];rg110=Array[ragam101,q];rg111=Array [ragam111,q];rg112=Array[ragam121,q];rg113=Array[ragam131,q];rg114=Array[ragam141,q];rg
115=Array[ragam151,q]; rg22=Array[ragam22,q];rg23=Array[ragam32,q];rg24=Array[ragam42,q];rg25=
Array[ragam52,q];rg26=Array[ragam62,q];rg27=Array[ragam72,q];rg28=Array [ragam82,q];rg29=Array[ragam92,q];rg210=Array[ragam102,q];rg211=Array
[ragam112,q];rg212=Array[ragam122,q];rg213=Array[ragam132,q];rg214=Array[ragam142,q];rg 215=Array[ragam152,q];
ragamnol1={Position[rg12,0`],Position[rg13,0`],Position[rg14,0`],Position [rg15,0`],Position[rg16,0`],Position[rg17,0`],Position[rg18,0`],Position[rg19,0`],
Position[rg110,0`],Position[rg111,0`],Position[rg112,0`],Position[rg113,0`], Position[rg114,0`],Position[rg115,0`]}
For[i=1,i kategorimaks-1,i++,Banyaknyaragamnol1[i]=Length[ragamnol1[[i]]]]
brnol1=Array[Banyaknyaragamnol1,kategorimaks-1] ragamnol2={Position[rg22,0`],Position[rg23,0`],Position[rg24,0`],Position
[rg25,0`],Position[rg26,0`],Position[rg27,0`],Position[rg28,0`],Position[rg29,0`], Position[rg210,0`],Position[rg211,0`],Position[rg212,0`],Position[rg213,0`],
Position[rg214,0`],Position[rg215,0`]} For[i=1,i
kategorimaks-1,i++,Banyaknyaragamnol2[i]=Length[ragamnol2[[i]]]] brnol2=Array[Banyaknyaragamnol2,kategorimaks-1]
Menggabungkan ragam nol populasi 1  2
For[i=1,i q,i++,ukurancontoh[i]=i]
Array[ukurancontoh,q]; For[i=2,i
kategorimaks,i++,gabunganragamnolkat[i]=Union [ragamnol1[[i-1]],ragamnol2[[i-1]]]]
ragamnolgab=Array[gabunganragamnolkat,kategorimaks-1,2]
Statistik dengan ragam nol nilainya di set menjadi nol
For[kategorimin=2,kategorimin kategorimaks,kategorimin++,For[l=1,lLength
[Flatten[ragamnolgab[[kategorimin1]],1]],l++, {xmean[1,Flatten[ragamnolgab[[kategorimin-1]],1][[l]],kategorimin]=0}]]
For[kategorimin=2,kategorimin kategorimaks,kategorimin++,For[l=1,lLength
[Flatten[ragamnolgab[[kategorimin1]],1]],l++, {xmean[2,Flatten[ragamnolgab[[kategorimin-1]],1][[l]],kategorimin]=0}]]
For[kategorimin=2,kategorimin kategorimaks,kategorimin++,For[l=1,lLength
[Flatten[ragamnolgab[[kategorimin1]],1]],l++, {ragam[1,Flatten[ragamnolgab[[kategorimin-1]],1][[l]],kategorimin]=0}]]
For[kategorimin=2,kategorimin kategorimaks,kategorimin++,For[l=1,lLength
[Flatten[ragamnolgab[[kategorimin1]],1]],l++, {ragam[2,Flatten[ragamnolgab[[kategorimin-1]],1][[l]],kategorimin]=0}]]
For[kategorimin=2,kategorimin kategorimaks,kategorimin++,For[l=1,lLength
[Flatten[ragamnolgab[[kategorimin1]],1]],l++, {spk[Flatten[ragamnolgab[[kategorimin-1]],1][[l]],kategorimin]=0}]]
For[kategorimin=2,kategorimin kategorimaks,kategorimin++,For[l=1,lLength
[Flatten[ragamnolgab[[kategorimin1]],1]],l++, {deltakategori[Flatten[ragamnolgab[[kategorimin-1]],1][[l]],kategorimin]=0}]]
For[kategorimin=2,kategorimin kategorimaks,kategorimin++,For[l=1,lLength
[Flatten[ragamnolgab[[kategorimin1]],1]],l++, {batasatas[Flatten[ragamnolgab[[kategorimin-1]],1][[l]],kategorimin]=0}]]
For[kategorimin=2,kategorimin kategorimaks,kategorimin++,For[l=1,lLength
[Flatten[ragamnolgab[[kategorimin1]],1]],l++,{batasbawah[Flatten[ragamnolgab[[kategorimin- 1]],1][[l]],kategorimin]=0}]]
Posisi contoh dengan ragam tidak nol dikumpulkan
For[i=1,i kategorimaks-
1,i++,posisiragamtdknol[i+1]=Delete[Array[ukurancontoh,q],ragamnolgab[[i]]]]
Menghitung Mean Margin of Error
For[kategorimin = 2, kategorimin = kategorimaks, kategorimin++, For[l = 1, l = Length[posisiragamtdknol[kategorimin]], l++,
{spk[posisiragamtdknol[kategorimin][[l]], kategorimin] =
Sqrt[jumlahfkelas[1, posisiragamtdknol[kategorimin][[l]], kategorimin] 1ragam[1, posisiragamtdknol[kategorimin][[l]], kategorimin] +
jumlahfkelas[2, posisiragamtdknol[kategorimin][[l]], kategorimin] - 1 ragam[2, posisiragamtdknol[kategorimin][[l]], kategorimin]
jumlahfkelas[1, posisiragamtdknol[kategorimin][[l]], kategorimin] - 1 + jumlahfkelas[2, posisiragamtdknol[kategorimin][[l]], kategorimin] - 1]}]]
For[kategorimin = 2, kategorimin = kategorimaks, kategorimin++, For[l = 1, l = Length[posisiragamtdknol[kategorimin]], l++,
{deltakategori[posisiragamtdknol[kategorimin][[l]], kategorimin] = N[talphaperduaspk[posisiragamtdknol[kategorimin][[l]], kategorimin]
Sqrt[1jumlahfkelas[1, posisiragamtdknol[kategorimin][[l]], kategorimin] + 1jumlahfkelas[2, posisiragamtdknol[kategorimin][[l]], kategorimin]]];
deltarerata[posisiragamtdknol[kategorimin][[l]], kategorimin] = xmean[1, posisiragamtdknol[kategorimin][[l]], kategorimin] -
xmean[2, posisiragamtdknol[kategorimin][[l]], kategorimin]; batasatas[posisiragamtdknol[kategorimin][[l]], kategorimin] =
deltarerata[posisiragamtdknol[kategorimin][[l]], kategorimin] + deltakategori[posisiragamtdknol[kategorimin][[l]], kategorimin];
batasbawah[posisiragamtdknol[kategorimin][[l]], kategorimin] = deltarerata[posisiragamtdknol[kategorimin][[l]], kategorimin] -
deltakategori[posisiragamtdknol[kategorimin][[l]], kategorimin]; keputusankategoriTrue[posisiragamtdknol[kategorimin][[l]], kategorimin] =
If[batasbawah[posisiragamtdknol[kategorimin][[l]], kategorimin] Subscript[
, 1] - Subscript[, 2] batasatas[posisiragamtdknol[kategorimin][[l]], kategorimin], True, False];
keputusankategoriFalse[posisiragamtdknol[kategorimin][[l]], kategorimin] = If[batasbawah[posisiragamtdknol[kategorimin][[l]], kategorimin] =
Subscript[ , 1] - Subscript[, 2] ||
Subscript[ , 1] - Subscript[, 2] =
batasatas[posisiragamtdknol[kategorimin][[l]], kategorimin], False, True]}]] For[i=1,i
kategorimaks1,i++,dalamkategori[i+1]=Count[Transpose[Array [keputusankategoriTrue,{q,kategorimaks-1},{1,2}]][[i]],True]]
For[i=1,i kategorimaks1,i++,luarkategori[i+1]=Count[Transpose[Array
[keputusankategoriFalse,{q,kategorimaks-1},{1,2}]][[i]],False]] For[j = 2, j = kategorimaks, j++, dkk[j] = 1Length[posisiragamtdknol[j]]
Total[Array[deltakategori, {q, 1}, {1, j}]]] dk=Flatten[Array[dkk,kategorimaks-1,2],1]
For[j = 2, j = kategorimaks, j++, batasatask[j] = 1Length[posisiragamtdknol[j]] Total[Array[batasatas, {q, 1}, {1, j}]]]
reratakatbatasatas=Flatten[Array[batasatask,kategorimaks-1,2],1]; For[j = 2, j = kategorimaks, j++, batasbawahk[j] = 1Length[posisiragamtdknol[j]]
Total[Array[batasbawah, {q, 1}, {1, j}]]] reratakatbatasbawah=Flatten[Array[batasbawahk,kategorimaks-1,2],1];
Jangkauankat=reratakatbatasatas-reratakatbatasbawah; Mencari Nilai P Value data kategori
For[i=1,i
Length[posisiragamtdknol[2]],i++,PValue[i,2]= TTest[{contoh[1,posisiragamtdknol[2][[i]],2],
contoh[2,posisiragamtdknol[2][[i]],2]}, 1-2,
PValue,SignificanceLevel 0.05,VerifyTestAssumptionsNone,
AlternativeHypothesis Unequal]]
For[i=1,i Length[posisiragamtdknol[3]],i++,PValue[i,3]=
TTest[{contoh[1,posisiragamtdknol[3][[i]],3], contoh[2,posisiragamtdknol[3][[i]],3]},
12, PValue,SignificanceLevel
0.05,VerifyTestAssumptionsNone, AlternativeHypothesis
Unequal]] For[i=1,i
Length[posisiragamtdknol[4]],i++,PValue[i,4]= TTest[{contoh[1,posisiragamtdknol[4][[i]],4],
contoh[2,posisiragamtdknol[4][[i]],4]}, 1-2,
PValue,SignificanceLevel 0.05,VerifyTestAssumptionsNone,
AlternativeHypothesis Unequal]]
For[i=1,i Length[posisiragamtdknol[5]],i++,PValue[i,5]=
TTest[{contoh[1,posisiragamtdknol[5][[i]],5], contoh[2,posisiragamtdknol[5][[i]],5]},
1-2, PValue,SignificanceLevel
0.05,VerifyTestAssumptionsNone, AlternativeHypothesis
Unequal]] For[i=1,i
Length[posisiragamtdknol[6]],i++,PValue[i,6]= TTest[{contoh[1,posisiragamtdknol[6][[i]],6],
contoh[2,posisiragamtdknol[6][[i]],6]}, 1-2,
PValue,SignificanceLevel 0.05,VerifyTestAssumptionsNone,
AlternativeHypothesis Unequal]]
For[i=1,i Length[posisiragamtdknol[7]],i++,PValue[i,7]=
TTest[{contoh[1,posisiragamtdknol[7][[i]],7], contoh[2,posisiragamtdknol[7][[i]],7]},
1-2, PValue,SignificanceLevel
0.05,VerifyTestAssumptionsNone, AlternativeHypothesis
Unequal]] For[i=1,i
Length[posisiragamtdknol[8]],i++,PValue[i,8]= TTest[{contoh[1,posisiragamtdknol[8][[i]],8],
contoh[2,posisiragamtdknol[8][[i]],8]}, 1-2,
PValue,SignificanceLevel 0.05,VerifyTestAssumptionsNone,
AlternativeHypothesis Unequal]]
For[i=1,i Length[posisiragamtdknol[9]],i++,PValue[i,9]=
TTest[{contoh[1,posisiragamtdknol[9][[i]],9], contoh[2,posisiragamtdknol[9][[i]],9]},
1-2, PValue,SignificanceLevel
0.05,VerifyTestAssumptionsNone, AlternativeHypothesis
Unequal]] For[i=1,i
Length[posisiragamtdknol[10]],i++,PValue[i,10]= TTest[{contoh[1,posisiragamtdknol[10][[i]],10],
contoh[2,posisiragamtdknol[10][[i]],10]}, 1-2,
PValue,SignificanceLevel 0.05,VerifyTestAssumptionsNone,
AlternativeHypothesis Unequal]]
For[i=1,i Length[posisiragamtdknol[11]],i++,PValue[i,11]=
TTest[{contoh[1,posisiragamtdknol[11][[i]],11], contoh[2,posisiragamtdknol[11][[i]],11]},
1-2, PValue,SignificanceLevel
0.05,VerifyTestAssumptionsNone, AlternativeHypothesis
Unequal]] For[i=1,i
Length[posisiragamtdknol[12]],i++,PValue[i,12]= TTest[{contoh[1,posisiragamtdknol[12][[i]],12],
contoh[2,posisiragamtdknol[12][[i]],12]}, 1-
2,PValue,SignificanceLevel0.05,VerifyTestAssumptionsNone, AlternativeHypothesis
Unequal]] For[i=1,i
Length[posisiragamtdknol[13]],i++,PValue[i,13]= TTest[{contoh[1,posisiragamtdknol[13][[i]],13],
contoh[2,posisiragamtdknol[13][[i]],13]}, 1-2,
PValue,SignificanceLevel 0.05,VerifyTestAssumptionsNone,
AlternativeHypothesis Unequal]]
For[i=1,i Length[posisiragamtdknol[14]],i++,PValue[i,14]=
TTest[{contoh[1,posisiragamtdknol[14][[i]],14], contoh[2,posisiragamtdknol[14][[i]],14]}, 1-2,
PValue,SignificanceLevel 0.05,VerifyTestAssumptionsNone,
AlternativeHypothesis Unequal]]
For[i=1,i Length[posisiragamtdknol[15]],i++,PValue[i,15]=
TTest[{contoh[1,posisiragamtdknol[15][[i]],15],
contoh[2,posisiragamtdknol[15][[i]],15]}, 1-2,
PValue,SignificanceLevel 0.05,VerifyTestAssumptionsNone,
AlternativeHypothesis Unequal]]
Mencari Rerata Nilai P Value dan Kesimpulan Uji T dari data kategori 2 sampai 15
NilaiPV[2]=Flatten[Array[PValue,{Length[posisiragamtdknol[2]],1},{1,2}],1]; NilaiPV[3]=Flatten[Array[PValue,{Length[posisiragamtdknol[3]],1},{1,3}],1];
NilaiPV[4]=Flatten[Array[PValue,{Length[posisiragamtdknol[4]],1},{1,4}],1]; NilaiPV[5]=Flatten[Array[PValue,{Length[posisiragamtdknol[5]],1},{1,5}],1];
NilaiPV[6]=Flatten[Array[PValue,{Length[posisiragamtdknol[6]],1},{1,6}],1]; NilaiPV[7]=Flatten[Array[PValue,{Length[posisiragamtdknol[7]],1},{1,7}],1];
NilaiPV[8]=Flatten[Array[PValue,{Length[posisiragamtdknol[8]],1},{1,8}],1]; NilaiPV[9]=Flatten[Array[PValue,{Length[posisiragamtdknol[9]],1},{1,9}],1];
NilaiPV[10]=Flatten[Array[PValue, {Length[posisiragamtdknol[10]],1},{1,10}],1];
NilaiPV[11]=Flatten[Array[PValue, {Length[posisiragamtdknol[11]],1},{1,11}],1];
NilaiPV[12]=Flatten[Array[PValue, {Length[posisiragamtdknol[12]],1},{1,12}],1];
NilaiPV[13]=Flatten[Array[PValue, {Length[posisiragamtdknol[13]],1},{1,13}],1];
NilaiPV[14]=Flatten[Array[PValue, {Length[posisiragamtdknol[14]],1},{1,14}],1];
NilaiPV[15]=Flatten[Array[PValue, {Length[posisiragamtdknol[15]],1},{1,15}],1];
NilaiP={Mean[NilaiPV[2]],Mean[NilaiPV[3]],Mean[NilaiPV[4]], Mean[NilaiPV[5]],Mean[NilaiPV[6]],Mean[NilaiPV[7]],
Mean[NilaiPV[8]],Mean[NilaiPV[9]],Mean[NilaiPV[10]], Mean[NilaiPV[11]],Mean[NilaiPV[12]],Mean[NilaiPV[13]],
Mean[NilaiPV[14]],Mean[NilaiPV[15]]}; For[i=1,i
 kategorimaks-1,i++,kes[i]=If[NilaiP[[i]],Tolak H ,Terima H
]] kesimpulan=Array[kes,kategorimaks-1];
Kesimpulan Uji Nilai Tengah
For[i=1,i Length[posisiragamtdknol[2]],i++,PValueC[i,2]=
TTest[{contoh[1,posisiragamtdknol[2][[i]],2], contoh[2,posisiragamtdknol[2][[i]],2]},
1-2, ShortTestConclusion,SignificanceLevel
0.05,VerifyTestAssumptionsNone, AlternativeHypothesis
Unequal]] For[i=1,i
Length[posisiragamtdknol[3]],i++,PValueC[i,3]= TTest[{contoh[1,posisiragamtdknol[3][[i]],3],
contoh[2,posisiragamtdknol[3][[i]],3]}, 1-2,
ShortTestConclusion,SignificanceLevel 0.05,VerifyTestAssumptionsNone,
AlternativeHypothesis Unequal]]
For[i=1,i Length[posisiragamtdknol[4]],i++,PValueC[i,4]=
TTest[{contoh[1,posisiragamtdknol[4][[i]],4], contoh[2,posisiragamtdknol[4][[i]],4]},
1-2, ShortTestConclusion,SignificanceLevel
0.05,VerifyTestAssumptionsNone, AlternativeHypothesis
Unequal]] For[i=1,i
Length[posisiragamtdknol[5]],i++,PValueC[i,5]=
TTest[{contoh[1,posisiragamtdknol[5][[i]],5], contoh[2,posisiragamtdknol[5][[i]],5]},
1- 2,ShortTestConclusion,SignificanceLevel0.05,VerifyTestAssumptionsNone,
AlternativeHypothesis Unequal]]
For[i=1,i Length[posisiragamtdknol[6]],i++,PValueC[i,6]=
TTest[{contoh[1,posisiragamtdknol[6][[i]],6], contoh[2,posisiragamtdknol[6][[i]],6]},
1-2, ShortTestConclusion,SignificanceLevel
0.05,VerifyTestAssumptionsNone, AlternativeHypothesis
Unequal]] For[i=1,i
Length[posisiragamtdknol[7]],i++,PValueC[i,7]= TTest[{contoh[1,posisiragamtdknol[7][[i]],7],contoh[2,posisiragamtdknol[7][[i]],7]},
1-2, ShortTestConclusion,SignificanceLevel
0.05,VerifyTestAssumptionsNone, AlternativeHypothesis
Unequal]] For[i=1,i
Length[posisiragamtdknol[8]],i++,PValueC[i,8]= TTest[{contoh[1,posisiragamtdknol[8][[i]],8],
contoh[2,posisiragamtdknol[8][[i]],8]}, 1-2,
ShortTestConclusion,SignificanceLevel 0.05,VerifyTestAssumptionsNone,
AlternativeHypothesis Unequal]]
For[i=1,i Length[posisiragamtdknol[9]],i++,PValueC[i,9]=
TTest[{contoh[1,posisiragamtdknol[9][[i]],9], contoh[2,posisiragamtdknol[9][[i]],9]},
1-2, ShortTestConclusion,SignificanceLevel
0.05,VerifyTestAssumptionsNone, AlternativeHypothesis
Unequal]] For[i=1,i
Length[posisiragamtdknol[10]],i++,PValueC[i,10]= TTest[{contoh[1,posisiragamtdknol[10][[i]],10],contoh[2,posisiragamtdknol[10][[i]],10]},
1-2, ShortTestConclusion,SignificanceLevel
0.05,VerifyTestAssumptionsNone, AlternativeHypothesis
Unequal]] For[i=1,i
Length[posisiragamtdknol[11]],i++,PValueC[i,11]= TTest[{contoh[1,posisiragamtdknol[11][[i]],11],
contoh[2,posisiragamtdknol[11][[i]],11]}, 1-2,
ShortTestConclusion,SignificanceLevel 0.05,VerifyTestAssumptionsNone,
AlternativeHypothesis Unequal]]
For[i=1,i Length[posisiragamtdknol[11]],i++,PValueC[i,12]=
TTest[{contoh[1,posisiragamtdknol[12][[i]],12], contoh[2,posisiragamtdknol[11][[i]],12]},
1-2, ShortTestConclusion,SignificanceLevel
0.05,VerifyTestAssumptionsNone, AlternativeHypothesis
Unequal]] For[i=1,i
Length[posisiragamtdknol[13]],i++,PValueC[i,13]= TTest[{contoh[1,posisiragamtdknol[13][[i]],13],
contoh[2,posisiragamtdknol[13][[i]],13]}, 1-2,
ShortTestConclusion,SignificanceLevel 0.05,VerifyTestAssumptionsNone,
AlternativeHypothesis Unequal]]
For[i=1,i Length[posisiragamtdknol[14]],i++,PValueC[i,14]=
TTest[{contoh[1,posisiragamtdknol[14][[i]],14], contoh[2,posisiragamtdknol[14][[i]],14]},
1-2, ShortTestConclusion,SignificanceLevel
0.05,VerifyTestAssumptionsNone, AlternativeHypothesis
Unequal]] For[i=1,i
Length[posisiragamtdknol[15]],i++,PValueC[i,15]= TTest[{contoh[1,posisiragamtdknol[15][[i]],15],
contoh[2,posisiragamtdknol[15][[i]],15]}, 1-2,
ShortTestConclusion,SignificanceLevel 0.05,VerifyTestAssumptionsNone,
AlternativeHypothesis Unequal]]
For[i=1,i kategorimaks1,i++,Tolak[i]=
Count[Transpose[Array[PValueC,{q,kategorimaks-1},{1,2}]][[i]],Reject]] For[i=1,i
kategorimaks1,i++,Terima[i]=Count[Transpose[Array[PValueC,
{q,kategorimaks-1},{1,2}]][[i]],Do not reject]] For[i=1,i
kategorimaks-1,i++,data1[i]={i+1,dk[[i]]}] Show[ListLinePlot[Array[data1,kategorimaks-1],
PlotStyle {Thick,Red},AxesOriginAutomatic,PlotRange{0,25}],
Plot[reratagalat,{x,0,kategorimaks+1},PlotStyle {Thick,Blue}],
PlotLabel n == n1,AxesLabel-{kategori,mean margin of error}]
TableForm[Table[{q,talphaperdua,reratagalat,luarkontinu,dalamkontinu, luarkontinu+dalamkontinu,tolakk,terimak,tolakk+terimak,sbnol1,sbnol2},{1}],
TableHeadings {None,{banyaknya contoh,t
2
,mmoe,interval denganout 1-2  ,interval dengan 1-2,jumlah,tolak H
,terima H ,jumlah,
2 nol pop 1,2 nol pop 2}},TableAlignmentsCenter,TableSpacing{2,2}] TableForm[Table[{i,talphaperdua,luarkategori[i],dalamkategori[i],luarkategori[i]+dalamkategori[i
],Tolak[i-1],Terima[i-1],Tolak[i-1]+Terima[i-1],brnol1[[i- 1]],brnol2[[i1]]},{i,2,kategorimaks}],TableHeadings
{None,{kategori,t
2
,interval tanpa 1-
2  ,interval dengan 1-2,jumlah,tolak H ,terima H
,jumlah, 2 nol pop 1,2 nol
pop 2}}, TableAlignments
Center,TableSpacing{2,2}] TableForm[Table[{i,talphaperdua,dk[[i-1]],reratakatbatasbawah[[i-1]], reratakatbatasatas[[i-
1]],Jangkauankat[[i-1]],NilaiP[[i-1]],kesimpulan[[i-1]]}, {i,2,kategorimaks}],TableHeadings
{None,{kategori,t
2
,mmoe,rerata batas bawah ,rerata batas atas,panjang interval,
rerata p value,kesimpulan}}, TableAlignments Center,TableSpacing{2,2}]
Kategori dengan bias terkecil
Print[Bias terkecil dari kasus 1, normal, contoh berukuran n1 = ,n1 , dan n2 = ,n2 , adalah ,Min[dk] , berada pada kategori ke ,
Flatten[Flatten[Position[dk,Min[dk],1]]+1]] Clear[pt1,pt2,n1,n2];
Lampiran 2. Program Plot 3D dan Fit Fungsi
kategorimaks=15; dkmm10x=For[i=1,i
kategorimaks-1,i++, dkmm10y[i]=Import[C:\\Users\\DF\\Documents\\Draft31\\Lampiran 1 Kasus 1,
Normal\\Normal, kasus 1, 10 contoh.nb] [[1]][[104]][[1]][[1]][[2]][[1]][[1]][[1]][[2]][[1]][[2i-1]]]
reratagalat10=ToExpression[Import[C:\\Users\\DF\\Documents\\Draft31\\ Lampiran 1 Kasus 1, Normal\\Normal, kasus 1, 10 contoh.nb]
[[1]][[162]][[1]][[1]][[2]][[1]][[1]][[1]][[1]][[1]][[2]][[3]]] dkmm10=ToExpression[Array[dkmm10y,kategorimaks-1]]
us10={{2,dkmm10[[1]]},{3,dkmm10[[2]]},{4,dkmm10[[3]]},{5,dkmm10[[4]]}, {6,dkmm10[[5]]},{7,dkmm10[[6]]},{8,dkmm10[[7]]},{9,dkmm10[[8]]},
{10,dkmm10[[9]]},{11,dkmm10[[10]]},{12,dkmm10[[11]]},{13,dkmm10[[12]]},{14,dkmm10[[1 3]]},{15,dkmm10[[14]]}}
Show[ListLinePlot[us10,PlotStyle
{Thick,Red},PlotRange{0,25}], Plot[reratagalat10,{x,2,kategorimaks},PlotStyle
{Thick,Blue}], PlotLabel
n == 10,AxesOriginAutomatic,FrameTrue, FrameLabel
{Kategori,Mean Margin of Error}] dkmm20x=For[i=1,i
kategorimaks- 1,i++,dkmm20y[i]=Import[C:\\Users\\DF\\Documents\\Draft31\\Lampiran 1 Kasus 1,
Normal\\Normal, kasus 1, 20 contoh.nb] [[1]][[104]][[1]][[1]][[2]][[1]][[1]][[1]][[2]][[1]][[2i-1]]]
dkmm20=ToExpression[Array[dkmm20y,kategorimaks-1]] us20={{2,dkmm20[[1]]},{3,dkmm20[[2]]},{4,dkmm20[[3]]},{5,dkmm20[[4]]},
{6,dkmm20[[5]]},{7,dkmm20[[6]]},{8,dkmm20[[7]]},{9,dkmm20[[8]]}, {10,dkmm20[[9]]},{11,dkmm20[[10]]},{12,dkmm20[[11]]},{13,dkmm20[[12]]},{14,dkmm20[[1
3]]},{15,dkmm20[[14]]}} reratagalat20=ToExpression[Import[C:\\Users\\DF\\Documents\\Draft31\\
Lampiran 1 Kasus 1, Normal\\normal, kasus 1, 20 contoh.nb] [[1]][[162]][[1]][[1]][[2]][[1]][[1]][[1]][[1]][[1]][[2]][[3]]]
Show[ListLinePlot[us20,PlotStyle
{Thick,Red},PlotRange{0,20}], Plot[reratagalat20,{x,2,kategorimaks},PlotStyle
{Thick,Blue}], PlotLabel
n == 20,AxesOriginAutomatic,FrameTrue, FrameLabel
{Kategori,Mean Margin of Error}] dkmm30x=For[i=1,i
kategorimaks-1,i++, dkmm30y[i]=Import[C:\\Users\\DF\\Documents\\Draft31\\Lampiran 1 Kasus 1,
Normal\\Normal, kasus 1, 30 contoh.nb] [[1]][[104]][[1]][[1]][[2]][[1]][[1]][[1]][[2]][[1]][[2i- 1]]]
dkmm30=ToExpression[Array[dkmm30y,kategorimaks-1]] us30={{2,dkmm30[[1]]},{3,dkmm30[[2]]},{4,dkmm30[[3]]},{5,dkmm30[[4]]},
{6,dkmm30[[5]]},{7,dkmm30[[6]]},{8,dkmm30[[7]]},{9,dkmm30[[8]]}, {10,dkmm30[[9]]},{11,dkmm30[[10]]},{12,dkmm30[[11]]},{13,dkmm30[[12]]},{14,dkmm30[[1
3]]},{15,dkmm30[[14]]}} reratagalat30=ToExpression[Import[C:\\Users\\DF\\Documents\\Draft31\\
Lampiran 1 Kasus 1, Normal\\Normal, kasus 1, 30 contoh.nb][[1]][[162]][[1]][[1]][[2]][[1]][[1]][[1]][[1]][[1]][[2]][[3]]]
Show[ListLinePlot[us30,PlotStyle {Thick,Red},PlotRange{0,15}],
Plot[reratagalat30,{x,2,kategorimaks},PlotStyle {Thick,Blue}],
PlotLabel n == 30,AxesOriginAutomatic,FrameTrue,
FrameLabel {Kategori,Mean Margin of Error}]
dkmm100x=For[i=1,i kategorimaks-1,i++,
dkmm100y[i]=Import[C:\\Users\\DF\\Documents\\Draft31\\ Lampiran 1 Kasus 1, Normal\\Normal, kasus 1, 100 contoh.nb]
[[1]][[104]][[1]][[1]][[2]][[1]][[1]][[1]][[2]][[1]][[2i-1]]] dkmm100=ToExpression[Array[dkmm100y,kategorimaks-1]]
us100={{2,dkmm100[[1]]},{3,dkmm100[[2]]},{4,dkmm100[[3]]}, {5,dkmm100[[4]]},{6,dkmm100[[5]]},{7,dkmm100[[6]]},{8,dkmm100[[7]]},
{9,dkmm100[[8]]},{10,dkmm100[[9]]},{11,dkmm100[[10]]}, {12,dkmm100[[11]]},{13,dkmm100[[12]]},{14,dkmm100[[13]]},
{15,dkmm100[[14]]}} reratagalat100=ToExpression[Import[C:\\Users\\DF\\Documents\\Draft31\\
Lampiran 1 Kasus 1, Normal\\Normal, kasus 1, 100 contoh.nb] [[1]][[162]][[1]][[1]][[2]][[1]][[1]][[1]][[1]][[1]][[2]][[3]]]
Show[ListLinePlot[us100,PlotStyle
{Thick,Red},PlotRange{0,8}], Plot[reratagalat100,{x,2,kategorimaks},PlotStyle
{Thick,Blue}], PlotLabel
n == 100,AxesOriginAutomatic,FrameTrue, FrameLabel
{Kategori,Mean Margin of Error}] dkmm200x=For[i=1,i
kategorimaks- 1,i++,dkmm200y[i]=Import[C:\\Users\\DF\\Documents\\Draft31\\
Lampiran 1 Kasus 1, Normal\\Normal, kasus 1, 200 contoh.nb] [[1]][[104]][[1]][[1]][[2]][[1]][[1]][[1]][[2]][[1]][[2i-1]]]
dkmm200=ToExpression[Array[dkmm200y,kategorimaks-1]] us200={{2,dkmm200[[1]]},{3,dkmm200[[2]]},{4,dkmm200[[3]]},
{5,dkmm200[[4]]},{6,dkmm200[[5]]},{7,dkmm200[[6]]},{8,dkmm200[[7]]}, {9,dkmm200[[8]]},{10,dkmm200[[9]]},{11,dkmm200[[10]]},
{12,dkmm200[[11]]},{13,dkmm200[[12]]},{14,dkmm200[[13]]}, {15,dkmm200[[14]]}}
reratagalat200=ToExpression[Import[C:\\Users\\DF\\Documents\\Draft31\\ Lampiran 1 Kasus 1, Normal\\Normal, kasus 1, 200 contoh.nb]
[[1]][[162]][[1]][[1]][[2]][[1]][[1]][[1]][[1]][[1]][[2]][[3]]] Show[ListLinePlot[us200,PlotStyle
{Thick,Red},PlotRange{0,6}], Plot[reratagalat200,{x,2,kategorimaks},PlotStyle
{Thick,Blue}], PlotLabel
n == 200,AxesOriginAutomatic,FrameTrue, FrameLabel
{Kategori,Mean Margin of Error}] dkmm300x=For[i=1,i
kategorimaks- 1,i++,dkmm300y[i]=Import[C:\\Users\\DF\\Documents\\Draft31\\
Lampiran 1 Kasus 1, Normal\\Normal, kasus 1, 300 contoh.nb] [[1]][[104]][[1]][[1]][[2]][[1]][[1]][[1]][[2]][[1]][[2i-1]]]
dkmm300=ToExpression[Array[dkmm300y,kategorimaks-1]] us300={{2,dkmm300[[1]]},{3,dkmm300[[2]]},{4,dkmm300[[3]]},
{5,dkmm300[[4]]},{6,dkmm300[[5]]},{7,dkmm300[[6]]},{8,dkmm300[[7]]},{9,dkmm300[[8]]}, {10,dkmm300[[9]]},{11,dkmm300[[10]]},{12,dkmm300[[11]]},{13,dkmm300[[12]]},{14,dkmm3
00[[13]]},{15,dkmm300[[14]]}} reratagalat300=ToExpression[Import[C:\\Users\\DF\\Documents\\Draft31\\
Lampiran 1 Kasus 1, Normal\\Normal, kasus 1, 300 contoh.nb] [[1]][[162]][[1]][[1]][[2]][[1]][[1]][[1]][[1]][[1]][[2]][[3]]]
Show[ListLinePlot[us300,PlotStyle
{Thick,Red},PlotRange{0,6}], Plot[reratagalat300,{x,2,kategorimaks},PlotStyle
{Thick,Blue}],
PlotLabel n == 300,AxesOriginAutomatic,FrameTrue,
FrameLabel {Kategori,Mean Margin of Error}]
dkmm400x=For[i=1,i kategorimaks-
1,i++,dkmm400y[i]=Import[C:\\Users\\DF\\Documents\\Draft31\\ Lampiran 1 Kasus 1, Normal\\Normal, kasus 1, 400 contoh.nb]
[[1]][[104]][[1]][[1]][[2]][[1]][[1]][[1]][[2]][[1]][[2i-1]]] dkmm400=ToExpression[Array[dkmm400y,kategorimaks-1]]
us400={{2,dkmm400[[1]]},{3,dkmm400[[2]]},{4,dkmm400[[3]]}, {5,dkmm400[[4]]},{6,dkmm400[[5]]},{7,dkmm400[[6]]},{8,dkmm400[[7]]},
{9,dkmm400[[8]]},{10,dkmm400[[9]]},{11,dkmm400[[10]]}, {12,dkmm400[[11]]},{13,dkmm400[[12]]},{14,dkmm400[[13]]},
{15,dkmm400[[14]]}} reratagalat400=ToExpression[Import[C:\\Users\\DF\\Documents\\Draft31\\
Lampiran 1 Kasus 1, Normal\\Normal, kasus 1, 400 contoh.nb] [[1]][[162]][[1]][[1]][[2]][[1]][[1]][[1]][[1]][[1]][[2]][[3]]]
Show[ListLinePlot[us400,PlotStyle
{Thick,Red},PlotRange{0,25}],Plot[reratagalat400,{x,2,k ategorimaks},PlotStyle
{Thick,Blue}], PlotLabel
n == 400,AxesOriginAutomatic,FrameTrue, FrameLabel
{Kategori,Mean Margin of Error}] dkmm500x=For[i=1,i
kategorimaks-1,i++, dkmm500y[i]=Import[C:\\Users\\DF\\Documents\\Draft31\\
Lampiran 1 Kasus 1, Normal\\Normal, kasus 1, 500 contoh.nb] [[1]][[104]][[1]][[1]][[2]][[1]][[1]][[1]][[2]][[1]][[2i-1]]]
dkmm500=ToExpression[Array[dkmm500y,kategorimaks-1]] us500={{2,dkmm500[[1]]},{3,dkmm500[[2]]},{4,dkmm500[[3]]},
{5,dkmm500[[4]]},{6,dkmm500[[5]]},{7,dkmm500[[6]]},{8,dkmm500[[7]]}, {9,dkmm500[[8]]},{10,dkmm500[[9]]},{11,dkmm500[[10]]},
{12,dkmm500[[11]]},{13,dkmm500[[12]]},{14,dkmm500[[13]]}, {15,dkmm500[[14]]}} reratagalat500=ToExpression[Import[C:\\Users\\DF\\Documents\\Draft31\\ Lampiran 1 Kasus 1,
Normal\\Normal, kasus 1, 500 contoh.nb] [[1]][[162]][[1]][[1]][[2]][[1]][[1]][[1]][[1]][[1]][[2]][[3]]]
Show[ListLinePlot[us500,PlotStyle
{Thick,Red},PlotRange{0,25}], Plot[reratagalat500,{x,0,kategorimaks+1},PlotStyle
{Thick,Blue}], PlotLabel
n == 500,AxesOriginAutomatic,FrameTrue, FrameLabel
{Kategori,Mean Margin of Error}] For[ii=2,ii
kategorimaks,ii++,kat[ii]={{10,dkmm10[[ii-1]]}, {20,dkmm20[[ii-1]]},{30,dkmm30[[ii-1]]},{100,dkmm100[[ii-1]]}, {200,dkmm200[[ii-
1]]},{300,dkmm300[[ii-1]]}, {400,dkmm400[[ii-1]]},{500,dkmm500[[ii-1]]}}]
For[ii=1,ii
kategorimaks-1,ii++,gambarkat[ii+1]=Show[ListLinePlot[kat[ii+1], PlotStyle
{PointSize[Medium],Red}], FrameTrue, FrameLabel-{Ukuran Contoh,Mean Margin of Error},
BaseStyle-{FontWeight-Normal,FontSize 14},
PlotLabel {ii+1}kategori, AxesOriginAutomatic,PlotRange{0,25}]]
gambarkat[2] gambarkat[3]
gambarkat[4] gambarkat[5]
gambarkat[6] gambarkat[7]
gambarkat[8] gambarkat[9]
gambarkat[10]
gambarkat[11] gambarkat[12]
gambarkat[13] gambarkat[14]
gambarkat[15] Ukuran={10,20,30,100,200,300,400,500};
For[ii=2,ii
kategorimaks,ii++,{Bmaks[ii]=Max[Take[kat[ii],Length[kat[ii]],-1]], Bmin[ii]=Min[Take[kat[ii],Length[kat[ii]],-1]]}];
For[ii=2,ii kategorimaks,ii++,{Umaks[ii]=Ukuran[[Position[kat[ii],
Bmaks[ii]][[1,1]]]],Umin[ii]=Ukuran[[Position[kat[ii],Bmin[ii]][[1,1]]]]}];
Mean Margin of Error
TableForm[Table[{jj,kat[jj][[1,2]],kat[jj][[2,2]],kat[jj][[3,2]],kat[jj][[4,2]], kat[jj][[5,2]],kat[jj][[6,2]],kat[jj][[7,2]],kat[jj][[8,2]],Bmin[jj],Umin[jj],Bmaks[jj],Umaks[jj]},{jj,2,
kategorimaks}], TableHeadings
{None,{kategori,10,20,30,100,200,300,400, 500,Bias Minimum ,Ukuran Contoh,Bias Maksimum ,Ukuran
Contoh}},TableAlignments Center,TableSpacing{2,2}]
For[ii=2,ii kategorimaks,ii++,datan3[ii]={{10,ii,dkmm10[[ii-1]]},{20,ii,dkmm20[[ii-
1]]},{30,ii,dkmm30[[ii-1]]},{100,ii,dkmm100[[ii-1]]}, {200,ii,dkmm200[[ii- 1]]},{300,ii,dkmm300[[ii-1]]},{400,ii,dkmm400[[ii-1]]}, {500,ii,dkmm500[[ii-1]]}}]
gambar3n=Flatten[Array[datan3,kategorimaks-1,2],1]; ListPlot3D[gambar3n, AxesLabel-{Ukuran Contoh,Kategori,Mean Margin of
Error},PlotRange
{0,25}] For[i=1,i
Length[gambar3n],i++,t[i]=Flatten[{Partition[gambar3n[[i]],2], gambar3n[[i,3]]},1]]
Interepolasi
f=Interpolation[Array[t,Length[gambar3n]],InterpolationOrder 1]
Show[{Plot3D[f[x,y],{x,10,500},{y,2,15},AxesLabel-{Ukuran Contoh,Kategori,Mean Margin of Error},PlotRange
{0,25}]}]
Mencari Fungsi Pendekatan nlm=NonlinearModelFit[gambar3n,c Exp[-a n -b k],{a,b,c},{n,k}]
gambar=Normal[] nlm[10,2]
Plot3D[gambar,{n,0,500},{k,2,15},AxesLabel-{Ukuran
Sampel,Kategori,Mean Margin of Error},PlotRange {0,20}]
ClearAll;
Lampiran 3. Hasil untuk Kasus 1 Normal
,
Tabel 5 Kasus 1, Normal, 1000 set data berukuran 10
Kategori Interval
tanpa Interval
dengan Jumlah
Tolak Terima
Jumlah nol
pop 1 nol
pop 2 2
43 954
997 43
954 997
3 3
49 864
913 49
864 913
47 41
4 49
950 999
49 950
999 1
5 54
946 1000
54 946
1000 6
51 949
1000 51
949 1000
7 51
949 1000
51 949
1000 8
58 942
1000 58
942 1000
9 58
942 1000
58 942
1000 10
55 945
1000 55
945 1000
11 53
947 1000
53 947
1000 12
50 950
1000 50
950 1000
13 56
944 1000
56 944
1000 14
56 944
1000 56
944 1000
15 51
949 1000
51 949
1000 Data
Awal 58
942 1000
58 942
1000
Tabel 6 Rerata panjang interval kepercayaan
Kategori Rerata
Batas Bawah Rerata
Batas Atas Panjang
Interval 2
-23,421 23,345
46,842 3
-16,088 16,402
32,489 4
-15,322 15,356
30,678 5
-14,865 14,781
29,646 6
-14,442 14,524
28,966 7
-14,228 14,383
28,610 8
-14,163 14,222
28,385 9
-14,082 14,104
28,186 10
-14,038 14,052
28,090 11
-14,009 13,958
27,968 12
-13,927 14,024
27,952 13
-13,975 13,878
27,853 14
-13,893 13,992
27,884 15
-13,906 13,938
27,845
Tabel 7 Kasus 1, Normal, 1000 set data berukuran 20
Kategori Interval
tanpa Interval
dengan Jumlah
Tolak Terima
Jumlah nol
pop 1 nol
pop 2 2
48 952
1000 38
962 1000
3 69
928 997
55 942
997 2
1 4
51 949
1000 49
951 1000
5 53
947 1000
47 953
1000
6 56
944 1000
45 955
1000 7
63 937
1000 52
948 1000
8 51
949 1000
44 956
1000 9
60 940
1000 50
950 1000
10 62
938 1000
50 950
1000 11
53 947
1000 47
953 1000
12 60
940 1000
50 950
1000 13
58 942
1000 51
949 1000
14 63
937 1000
48 952
1000 15
63 937
1000 50
950 1000
Data Awal
54 946
1000 49
951 1000
Tabel 8 Rerata panjang interval kepercayaan
Kategori Rerata
Batas Bawah Rerata
Batas Atas Panjang
Interval 2
-15,152 15,837
30,990 3
-10,867 10,329
21,196 4
-10,098 10,268
20,367 5
-9,735 9,919
19,654 6
-9,710 9,662
19,373 7
-9,441 9,602
19,043 8
-9,504 9,389
18,894 9
-9,381 9,453
18,835 10
-9,292 9,427
18,720 11
-9,295 9,383
18,679 12
-9,291 9,337
18,628 13
-9,272 9,313
18,585 14
-9,241 9,321
18,563 15
-9,199 9,325
18,525
Tabel 9 Kasus 1, Normal, 1000 set data berukuran 30
Kategori Interval
tanpa Interval
dengan Jumlah
Tolak Terima
Jumlah nol
pop 1 nol
pop 2 2
57 943
1000 57
943 1000
3 52
948 1000
43 957
1000 4
53 947
1000 46
954 1000
5 60
940 1000
57 943
1000 6
52 948
1000 50
950 1000
7 55
945 1000
51 949
1000 8
53 947
1000 50
950 1000
9 52
948 1000
48 952
1000 10
53 947
1000 45
955 1000
11 59
941 1000
56 944
1000 12
57 943
1000 48
952 1000
13 56
944 1000
49 951
1000 14
56 944
1000 48
952 1000
15 61
939 1000
48 952
1000 Data
Awal 56
944 1000
49 951
1000
Tabel 10 Rerata panjang interval kepercayaan
Kategori Rerata
Batas Bawah Rerata
Batas Atas Panjang
Interval 2
-12,244 13,057
25,302 3
-8,739 8,617
17,356 4
--8,240 8,465
16,706
5 -8,089
8,089 16,178
6 -7,829
8,016 15,845
7 -7,826
7,828 15,654
8 -7,718
7,783 15,501
9 -7,734
7,696 15,431
10 -7,658
7,725 15,383
11 -7,655
7,660 15,316
12 -7,576
7,699 15,275
13 -7,628
7,629 15,257
14 -7,572
7,660 15,233
15 -7,608
7,615 15,223
Tabel 11 Kasus 1, Normal, 1000 set data berukuran 100
Kategori Interval
tanpa Interval
dengan Jumlah
Tolak Terima
Jumlah nol
pop 1 nol
pop 2 2
58 942
1000 58
942 1000
3 54
946 1000
51 949
1000 4
44 956
1000 42
958 1000
5 49
951 1000
47 953
1000 6
53 947
1000 51
949 1000
7 49
951 1000
47 953
1000 8
51 949
1000 51
949 1000
9 53
947 1000
50 950
1000 10
53 947
1000 51
949 1000
11 53
947 1000
52 948
1000 12
52 948
1000 51
949 1000
13 52
948 1000
50 950
1000 14
54 946
1000 52
948 1000
15 56
944 1000
53 947
1000 Data
Awal 54
946 1000
52 948
1000
Tabel 12 Rerata panjang interval kepercayaan
Kategori Rerata
Batas Bawah Rerata
Batas Atas Panjang
Interval 2
-6,892 6,970
13,863 3
-4,660 4,812
9,472 4
-4,492 4,671
9,164 5
-4,348 4,502
8,850 6
-4,271 4,386
8,658 7
-4,207 4,355
8,562 8
-4,171 4,314
8,486 9
-4,127 4,302
8,429 10
-4,122 4,285
8,408 11
-4,097 4,273
8,370 12
-4,111 4,240
8,352 13
-4,080 4,255
8,335 14
-4,088 4,238
8,327 15
-4,074 4,241
8,315
Tabel 13 Kasus 1, Normal, 1000 set data berukuran 200
Kategori Interval
tanpa Interval
dengan Jumlah
Tolak Terima
Jumlah nol
pop 1 nol
pop 2 2
61 939
1000 61
939 1000
3 58
942 1000
58 942
1000
4 61
939 1000
61 939
1000 5
56 944
1000 55
945 1000
6 55
945 1000
55 945
1000 7
49 951
1000 47
953 1000
8 53
947 1000
52 948
1000 9
57 943
1000 56
944 1000
10 58
942 1000
58 942
1000 11
50 950
1000 49
951 1000
12 60
940 1000
59 941
1000 13
54 946
1000 54
946 1000
14 57
943 1000
57 943
1000 15
62 938
1000 60
940 1000
Data Awal
61 939
1000 60
940 1000
Tabel 14 Rerata panjang interval kepercayaan
Kategori Rerata
Batas Bawah Rerata
Batas Atas Panjang
Interval 2
-4,955 4,843
9,,799 3
-3,381 3,347
6,729 4
-3,272 3,220
6,493 5
-3,136 3,122
6,659 6
-3,100 3,041
6,141 7
-3,042 3,029
6,071 8
-3,032 2,981
6,014 9
-3,006 2,973
5,979 10
-2,998 2,958
5,956 11
-2,994 2,943
5,938 12
-2,974 2,947
5,922 13
-2,971 2,943
5,915 14
-2,973 2,932
5,905 15
-2,965 2,931
5,896
Tabel 15 Kasus 1, Normal, 1000 set data berukuran 300
Kategori Interval
tanpa Interval
dengan Jumlah
Tolak Terima
Jumlah nol
pop 1 nol
pop 2 2
70 930
1000 66
934 1000
3 48
952 1000
48 952
1000 4
59 941
1000 59
941 1000
5 56
944 1000
56 944
1000 6
55 945
1000 55
945 1000
7 48
952 1000
48 952
1000 8
57 943
1000 56
944 1000
9 58
942 1000
58 942
1000 10
60 940
1000 60
940 1000
11 58
942 1000
58 942
1000 12
61 939
1000 61
939 1000
13 62
938 1000
60 940
1000 14
60 940
1000 60
940 1000
15 62
938 1000
61 939
1000 Data
Awal 62
938 1000
62 938
1000
Tabel 16 Rerata panjang interval kepercayaan
Kategori Rerata
Batas Bawah Rerata
Batas Atas Panjang
Interval 2
-4,000 4,000
8,001 3
-2,713 2,795
5,509
4 -2,654
2,653 5,307
5 -2,538
2,580 5,118
6 -2,498
2,522 5,021
7 -2,461
2,496 4,958
8 -2,436
2,475 4,912
9 -2,417
2,470 4,887
10 -2,416
2,451 4,868
11 -2,409
2,443 4,852
12 -2,408
2,433 4,841
13 -2,386
2,444 4,830
14 -2,391
2,433 4,824
15 -2,389
2,430 4,819
Tabel 17 Kasus 1, Normal, 1000 set data berukuran 400
Kategori Interval
tanpa Interval
dengan Jumlah
Tolak Terima
Jumlah nol
pop 1 nol
pop 2 2
50 950
1000 50
950 1000
3 41
959 1000
41 959
1000 4
45 955
1000 45
955 1000
5 42
958 1000
42 958
1000 6
46 954
1000 46
954 1000
7 43
957 1000
43 957
1000 8
48 952
1000 48
952 1000
9 41
959 1000
41 959
1000 10
43 957
1000 43
957 1000
11 48
952 1000
48 952
1000 12
42 958
1000 42
958 1000
13 42
958 1000
42 958
1000 14
47 953
1000 47
953 1000
15 43
957 1000
42 958
1000 Data
Awal 43
957 1000
43 957
1000
Tabel 18 Rerata panjang interval kepercayaan
Kategori Rerata
Batas Bawah Rerata
Batas Atas Panjang
Interval 2
-3,466 3,463
6,929 3
-2,388 2,371
4,759 4
-2,294 2,295
4,589 5
-2,240 2,187
4,427 6
-2,173 2, 168
4,341 7
-2,147 2,138
4,285 8
-2,152 2,096
4,248 9
-2,122 2,104
4,227 10
-2,122 2,086
4,209 11
-2,116 2,079
4,196 12
-2,101 2,085
4,186 13
-2,105 2,072
4,178 14
-2,104 2,068
4,172 15
-2,095 2,072
4,167
Tabel 19 Kasus 1, Normal, 1000 set data berukuran 500
Kategori Interval
tanpa Interval
dengan Jumlah
Tolak Terima
Jumlah nol
pop 1 nol
pop 2
2 47
953 1000
47 953
1000 3
46 954
1000 46
954 1000
4 39
961 1000
39 961
1000 5
51 949
1000 50
950 1000
6 38
962 1000
38 962
1000 7
52 948
1000 52
948 1000
8 37
963 1000
37 963
1000 9
45 955
1000 45
955 1000
10 46
954 1000
45 955
1000 11
48 952
1000 47
953 1000
12 46
954 1000
46 954
1000 13
47 953
1000 47
953 1000
14 45
955 1000
44 956
1000 15
46 954
1000 49
951 1000
Data Awal
46 954
1000 45
955 1000
Tabel 20 Rerata panjang interval kepercayaan
Kategori Rerata
Batas Bawah Rerata
Batas Atas Panjang
Interval 2
-3,031 3,166
6,198 3
-2,089 2,168
4,257 4
-2,032 2,077
4,110 5
-1,946 2,016
3,963 6
-1,904 1,980
3,884 7
-1,903 1,934
3,838 8
-1,876 1,929
3,805 9
-1,877 1,906
3,783 10
-1,850 1,917
3,768 11
-1,863 1,892
3,747 12
-1,852 1,894
3,742 13
-1,858 1,884
3,742 14
-1,843 1,892
3,735 15
-1,839 1,891
3,730
Lampiran 4. Hasil untuk Kasus 3 Poisson,
Tabel 21 Kasus 1, Poisson,  1000 set data berukuran 10
Kategori Interval
tanpa Interval
dengan Jumlah
Tolak Terima
Jumlah nol
pop 1 nol
pop 2 2
38 957
995 38
957 995
3 2
3 38
38 38
38 817
816 4
38 957
995 38
957 995
3 2
5 25
639 664
25 639
664 186
179 6
35 960
995 35
960 995
3 2
7 54
868 922
54 868
922 38
41 8
49 951
1000 49
951 1000
9 55
937 992
55 937
992 3
5 10
58 942
1000 58
942 1000
11 51
947 998
51 947
998 1
1 12
55 945
1000 45
953 998
13 62
938 1000
62 938
1000 14
58 942
1000 58
942 1000
15 59
941 1000
59 941
1000 Data
Awal 59
941 1000
59 941
1000
Tabel 22 Rerata panjang interval kepercayaan
Kategori Rerata
Batas Bawah Rerata
Batas Atas Panjang
Interval 2
-23,669 23,066
46,736 3
-10,254 10,254
20,509 4
-11,879 11,537
23,416 5
-8,128 7,868
15,996 6
-8,428 8,284
16,712 7
-7,352 7,209
14,562 8
-7,478 7,200
14,678 9
-7,327 7,136
14,464 10
-7,187 6,881
14,068 11
-7,148 6,884
14,032 12
-6,917 6,722
13,640 13
-7,152 6,764
13,917 14
-6,697 6,523
13,221 15
-6,898 6,556
13,454
Tabel 23 Kasus 1, Poisson,  1000 set data berukuran 20
Kategori Interval
tanpa Interval
dengan Jumlah
Tolak Terima
Jumlah nol
pop 1 nol
pop 2
2 40
960 1000
28 972
1000 3
1 113
114 1
113 114
683 659
4 40
960 1000
29 971
1000 5
64 879
943 55
888 943
30 28
6 47
953 1000
40 960
1000 7
60 939
999 49
950 999
1 8
41 959
1000 39
961 1000
9 61
939 1000
55 945
1000 10
54 946
1000 44
956 1000
11 54
946 1000
49 951
1000 12
54 946
1000 41
959 1000
13 58
942 1000
49 951
1000 14
54 946
1000 46
954 1000
15 67
933 1000
59 941
1000 Data
Awal 61
939 1000
51 949
1000
Tabel 24 Rerata panjang interval kepercayaan
Kategori Rerata
Batas Bawah Rerata
Batas Atas Panjang
Interval 2
-15,467 15,497
30,964 3
-4,716 5,301
10,018 4
-7,742 7,757
15,500 5
-5,004 4,893
9,897 6
-5,517 5,577
11,095 7
-4,798 4,767
9,566 8
-4,892 4,943
9,835 9
-4,779 4,874
9,653 10
-4,724 4,690
9,415 11
-4,653 4,759
9,413 12
-4,557 4,581
9,138 13
-4,663 4,666
9,329 14
-4,407 4,431
8,838 15
-4,512 4,503
9,015
Tabel 25 Kasus 1, Poisson,  1000 set data berukuran 30
Kategori Interval
tanpa Interval
dengan Jumlah
Tolak Terima
Jumlah nol
pop 1 nol
pop 2 2
54 946
1000 53
947 1000
3 2
200 202
2 200
202 551
561 4
55 945
1000 53
947 1000
5 50
938 988
47 941
988 7
6 6
57 943
1000 51
949 1000
7 58
942 1000
54 946
1000 8
55 945
1000 49
951 1000
9 56
944 1000
54 946
1000 10
56 944
1000 54
946 1000
11 65
935 1000
61 939
1000 12
56 944
1000 50
950 1000
13 61
939 1000
56 944
1000 14
58 942
1000 52
948 1000
15 60
940 1000
57 943
1000 Data
Awal 59
941 1000
53 947
1000
Tabel 26 Rerata panjang interval kepercayaan
Kategori Rerata
Batas Bawah Rerata
Batas Atas Panjang
Interval
2 -12,813
12,403 25,217
3 -3,301
3,686 6,988
4 -6,428
6,211 12,639
5 -4,016
3,970 7,986
6 -4,568
4,466 9,035
7 -3,898
3,945 7,843
8 -4,071
3,913 7,985
9 -3,965
3,953 7,919
10 -3,896
3,800 7,696
11 -3,867
3,786 7,653
12 -3,749
3,717 7,467
13 -3,872
3,745 7,617
14 -3,613
3,586 7,200
15 -3,727
3,639 7,367
Tabel 27 Kasus 1, Poisson,  1000 set data berukuran 100
Kategori Interval
tanpa Interval
dengan Jumlah
Tolak Terima
Jumlah nol
pop 1 nol
pop 2 2
51 949
1000 51
949 1000
3 43
704 747
43 704
747 146
130 4
49 951
1000 49
951 1000
5 52
948 1000
48 952
1000 6
55 945
1000 54
946 1000
7 54
946 1000
54 946
1000 8
53 947
1000 52
948 1000
9 55
945 1000
55 945
1000 10
45 955
1000 43
957 1000
11 55
945 1000
53 947
1000 12
47 953
1000 45
955 1000
13 45
955 1000
45 955
1000 14
47 953
1000 46
954 1000
15 53
947 1000
52 948
1000 Data
Awal 48
952 1000
47 953
1000
Tabel 28 Rerata panjang interval kepercayaan
Kategori Rerata
Batas Bawah Rerata
Batas Atas Panjang
Interval 2
-6,902 6,920
13,823 3
-1,370 1,353
2,723 4
-3,4660 3,463
6,924 5
-2,149 2,246
4,396 6
-2,473 2,482
4,955 7
-2,145 2,149
4,294 8
-2,188 2,216
4,404 9
-2,162 2,162
4,324 10
-2,088 2,136
4,224 11
-2,104 2,108
4,213 12
-2,030 2,058
4,088 13
-2,072 2,106
4,178 14
-1,976 1,979
3,955 15
-1,997 2,046
4,043
Tabel 29 Kasus 1, Poisson,  1000 set data berukuran 200
Kategori Interval
tanpa Interval
dengan Jumlah
Tolak Terima
Jumlah nol
pop 1 nol
pop 2
2 56
944 1000
56 944
1000 3
52 914
966 52
914 966
13 22
4 55
945 1000
55 945
1000 5
59 941
1000 59
941 1000
6 56
944 1000
55 945
1000 7
49 951
1000 49
951 1000
8 50
950 1000
50 950
1000 9
54 946
1000 54
946 1000
10 56
944 1000
55 945
1000 11
44 956
1000 43
957 1000
12 49
951 1000
49 951
1000 13
47 953
1000 46
954 1000
14 49
951 1000
47 9533
1000 15
49 951
1000 49
951 1000
Data Awal
47 953
1000 47
953 1000
Tabel 30 Rerata panjang interval kepercayaan
Kategori Rerata
Batas Bawah Rerata
Batas Atas Panjang
Interval 2
-4,866 4,905
9,771 3
-0,925 0,910
1,836 4
-2,436 2,457
4,893 5
-1,538 1,582
3,121 6
-1,751 1,759
3,510 7
-1,496 1,550
3,047 8
-1,542 1,573
3,115 9
-1,531 1,540
3,072 10
-1,484 1,511
2,996 11
-1,481 1,504
2,986 12
-1,444 1,458
2,902 13
-1,462 1,497
2,960 14
-1,385 1,421
2,806 15
-1,411 1,455
2,867
Tabel 31 Kasus 1, Poisson,  1000 set data berukuran 300
Kategori Interval
tanpa Interval
dengan Jumlah
Tolak Terima
Jumlah nol
pop 1 nol
pop 2 2
57 943
1000 56
944 1000
3 61
934 995
61 934
995 1
4 4
56 944
1000 55
945 1000
5 50
950 1000
49 951
1000 6
46 954
1000 46
954 1000
7 55
945 1000
55 945
1000 8
56 944
1000 53
944 1000
9 53
947 1000
56 947
1000 10
55 945
1000 53
947 1000
11 49
951 1000
49 951
1000 12
52 948
1000 52
948 1000
13 62
938 1000
61 939
1000 14
52 948
1000 52
948 1000
15 54
946 1000
54 946
1000 Data
Awal 61
939 1000
59 941
1000
Tabel 32 Rerata panjang interval kepercayaan
Kategori Rerata
Batas Bawah Rerata
Batas Atas Panjang
Interval 2
-3,897 4,081
7,978
3 -0,721
0,747 1,468
4 -1,953
2,043 3,997
5 -1,244
1,299 2,543
6 -1,392
1,467 2,860
7 -1,230
1,257 2,488
8 -1,242
1,296 2,539
9 -1,226
1,276 2,502
10 -1,192
1,249 2,442
11 -1,195
1,237 2,432
12 -1,160
1,204 2,365
13 -1,181
1,232 2,413
14 -1,122
1,165 2,287
15 -1,137
1,198 2,336
Tabel 33 Kasus 1, Poisson,  1000 set data berukuran 400
Kategori Interval
tanpa Interval
dengan Jumlah
Tolak Terima
Jumlah nol
pop 1 nol
pop 2 2
47 953
1000 47
953 1000
3 51
946 997
51 946
997 2
1 4
48 952
1000 48
952 1000
5 42
958 1000
42 958
1000 6
43 957
1000 43
957 1000
7 55
945 1000
55 945
1000 8
40 960
1000 39
961 1000
9 43
957 1000
43 957
1000 10
46 954
1000 45
955 1000
11 45
955 1000
45 955
1000 12
43 957
1000 43
957 1000
13 41
959 1000
41 959
1000 14
48 952
1000 47
953 1000
15 45
955 1000
44 956
1000 Data
Awal 43
957 1000
42 958
1000
Tabel 34 Rerata panjang interval kepercayaan
Kategori Rerata
Batas Bawah Rerata
Batas Atas Panjang
Interval 2
-3,483 3,426
6,910 3
-0,652 0,630
1,283 4
-1,744 1,717
3,461 5
-1,127 1,078
2,205 6
-1,254 1,225
2,480 7
-1,083 1,071
2,154 8
-1,113 1,088
2,202 9
-1,104 1,064
2,168 10
-1,078 1,038
2,116 11
-1,070 1,037
2,107 12
-1,035 1,015
2,050 13
-1,069 1,021
2,091 14
-1,002 0,979
1,981 15
-1,037 0,988
2,025
Tabel 35 Kasus 1, Poisson,  1000 set data berukuran 500
Kategori Interval
tanpa Interval
dengan Jumlah
Tolak Terima
Jumlah nol
pop 1 nol
pop 2
2 53
947 1000
53 947
1000 3
56 944
1000 56
944 1000
4 49
951 1000
48 952
1000 5
41 959
1000 41
959 1000
6 46
954 1000
46 954
1000 7
43 957
1000 43
957 1000
8 45
955 1000
45 955
1000 9
38 962
1000 38
962 1000
10 37
963 1000
37 963
1000 11
43 957
1000 42
958 1000
12 35
965 1000
35 965
1000 13
43 957
1000 42
958 1000
14 43
957 1000
42 958
1000 15
42 958
1000 41
959 1000
Data Awal
41 959
1000 41
959 1000
Tabel 36 Rerata panjang interval kepercayaan
Kategori Rerata
Batas Bawah Rerata
Batas Atas Panjang
Interval 2
-3,128 3,052
6,180 3
-0,567 0,579
1,146 4
-1,566 1,529
3,096 5
-0,991 0,980
1,971 6
-1,118 1,099
2,217 7
-0,958 0,967
1,925 8
-1,000 0,968
1,969 9
-0,967 0,972
1,940 10
-0,954 0,937
1,891 11
-0,950 0,934
1,884 12
-0,919 0,913
1,833 13
-0,941 0,929
1,870 14
-0,888 0,882
1,771 15
-0,907 0,903
1,811
iii
ABSTRACT
WAHYU  HARTONO .  Sensitivity  of  Data  Scale  on  Mean  Value  Test.  Under
supervision of  BUDI SUHARJO and HADI SUMARNO.
In  many  surveys,  researchers  have  often  to  deal  with  qualitative  or categorical  measurements. Sometimes, even  continuous  objects  or  characteristics
have to be measured by using a discrete scale. It may be caused by the inability of researchers  to  perform  measurements  or  scoring  of  an  object  precisely  using
continuous scale. This will reduce the degree of accuracy of the actual conditions of the measurement results. Therefore, it can imply bias in the results of statistical
tests  performed.  This  research  is  intended  to  measure  the  bias  of  T-test  on categorical  data  based  on  various  sample  sizes  and  data  distributions.  Moreover,
this  research  aims  to  determine  the  optimal  combination  between  the  number  of categories  and  the  number  of  sample  size  to  produce  a  certain  bias.  This  study
focuses on the statistical test to compare the characteristics between two groups or populations. The bias is measured as a margin of error of the confidence interval.
Preliminary data are generated by a computer program and then they are split into two  to  fifteen  categories  on  the  same  interval.  The  results  of  the  study  are  as
follows.  For  normally  and  Poisson  distributed  data,  increasing  number  of categories  or  sample  size  will  imply  decreasing  average  margin  of  error.  An
explicit  bias  function  according  to  sample  size  and  category  has  been  proposed. Categorization  of  data  can  increase  the  bias  in  the  confidence  interval,  but
fortunately the bias does n’t change the conclusion of the  -test.
Keywords : categorical data, confidence interval, measurement,
-test
iv
RINGKASAN WAHYU  HARTONO.
Sensitivitas Skala  Data  terhadap  Pengujian  Nilai
Tengah. Dibimbing oleh
BUDI SUHARJO dan HADI SUMARNO.
Dalam banyak survei atau penelitian sosial, seringkali peneliti dihadapkan pada  pengukuran  yang  bersifat  kualitatif  atau  kategori,  terkadang  karakteristik
objek  yang  bersifat  kontinu  diukur  dengan  menggunakan  skala  diskret.  Hal tersebut disebabkan oleh ketidakmampuan peneliti dalam melakukan pengukuran
atau  scoring  terhadap  suatu  objek  secara  tepat.  Ketidakmampuan  tersebut  akan menurunkan  derajat  ketepatan  terhadap  kondisi  yang  sesungguhnya  dari  hasil
pengukuran,  sehingga  diduga  menyebabkan  bias  pada  hasil  uji  statistik  yang dilakukan. Penelitian ini dilakukan untuk mengukur bias uji-
yang berbasis data kategori  pada  berbagai  ukuran  contoh  dan  sebaran  data,  serta  menentukan
kombinasi  optimal  antara  banyaknya  kategori  dan  banyaknya  contoh  dalam menghasilkan  bias  tertentu.  Penelitian  difokuskan  pada  uji  statistik  untuk
membandingkan  karakteristik  antara  dua  kelompok  atau  populasi.  Biasnya merupakan  nilai  margin  of  error  dari  konsep  interval  kepercayaan.  Selanjutnya
akan ditunjukkan hubungan antara konsep interval kepercayaan dengan uji agar
bias yang diperoleh dari konsep interval kepercayaan dapat diklaim berlaku untuk uji
pada nilai taraf nyata    yang sama. Data  awal  dibangkitkan  dengan  program  komputer  dan  data  hasil
kategorisasi  dibuat  berdasarkan  data  awal.  Data  awal  adalah  data  yang sebenarnya,  atau  jawaban  sebenarnya  dari  pertanyaan  yang  diajukan  kepada
responden,  data  awal  dapat  bersifat  kontinu  atau  diskret.  Sedangkan  data  hasil kategorisasi  adalah  data  yang  diperoleh  dari  jawaban  responden  yang  berupa
perkiraan  bahwa  jawaban  tersebut  berada  pada  suatu  interval  atau  kategori, dengan kata lain, data hasil kategorisasi bersifat diskret.
Uji- terhadap  dua  kelompok  data  yang  menyebar  normal  dan  Poisson
dilakukan dengan menyusun hipotesis nol dan hipotesis alternatif
sebagai berikut:
v dengan
adalah  rerata  masing-masing  populasi  dan  taraf  nyata .
Konsep  confidence  level  tingkat  kepercayaan  diterapkan  pada  interval kepercayaan  sehingga  akan  diperoleh  sekitar
atau       interval mengandung
dan  sebanyak atau      interval  tidak  mengandung
dari  sampel-sampel  acak  yang  dibangkitkan  secara  berulang-ulang sebanyak 1000 kali. Interval kepercayaan untuk membandingkan nilai tengah dua
populasi dinyatakan sebagai berikut: ̅
̅ √
̅ ̅
√ dengan
̅ adalah penduga estimator bagi  ̅, adalah nilai
tabel untuk uji- , adalah  ragam  gabungan,  dan
adalah  ukuran  sampel.  Hubungan  antara interval  kepercayaan  dengan  uji  hipotesis  akan  ditunjukkan  terkait  nilai
, sehingga bias dari interval kepercayaan juga dapat digunakan untuk uji-
. Untuk  setiap  kategori,  semakin  besar  ukuran  contoh  maka  biasnya
semakin  kecil.  Demikian  juga  sebaliknya,  untuk  setiap  ukuran  contoh,  semakin banyak  kategori  maka  biasnya  semakin  kecil.  Fungsi  dua  variabel  dari  ukuran
contoh  dan banyaknya kategori  telah diajukan untuk  menghitung nilai  margin  of error.  Pengkategorian  data  dapat  memperbesar  bias  pada  selang  kepercayaan,
tetapi untungnya bias tersebut tidak sampai mengubah kesimpulan dari uji- .
Kata kunci: data kategori, interval kepercayaan, pengukuran, uji-
                