Saran SIMPULAN DAN SARAN
deltakontinu[i] = N[talphaperduaspkontinu[i] Sqrt[1n1 + 1n2]]; thkontinu[i] =
N[xmean[1, i] - xmean[2, i] - Subscript[ , 1] -
Subscript[ , 2]spkontinu[i]Sqrt[1n1 + 1n2]];
deltarerata[i] = Abs[xmean[1, i] - xmean[2, i]]; batasatas[i] = deltarerata[i] + deltakontinu[i];
batasbawah[i] = deltarerata[i] - deltakontinu[i]; keputusankontinuTrue[i] = If[batasbawah[i]
Subscript[
, 1] - Subscript[, 2] batasatas[i], True, False]; keputusankontinuFalse[i] =
If[batasbawah[i] Subscript[ , 1] - Subscript[, 2] ||
Subscript[ , 1] - Subscript[, 2] batasatas[i],
False, True]}] reratagalat=Mean[Array[deltakontinu,q]];
dalamkontinu=Count[Array[keputusankontinuTrue,q],True]; luarkontinu=Count[Array[keputusankontinuFalse,q],False];
reratathkontinu=Mean[Array[thkontinu,q]]; reratabatasatas=Mean[Array[batasatas,q]];
reratabatasbawah=Mean[Array[batasbawah,q]];
Masing-masing 1000 pasangan contoh data kontinu dikonversi ke data kategori berukuran 2 sampai 15. Kemudian masing-masing pasangan data
kategori dilakukan uji nilai tengah.
For[j=1,j 2,j++,For[l=1,lq,l++,For[kategorimin=2,kategoriminkategorimaks,kategorimin++,For
[k=1,k kategorimin,k++,bbkelas[j,l,kategorimin,1]=0]]]]
For[j = 1, j = 2, j++, For[l = 1, l = q, l++, For[kategorimin = 2, kategorimin = kategorimaks, kategorimin++, For[k = 1, k = kategorimin, k++, selisih[j, l,
kategorimin, k] = N[100kategorimin, 4]]]]]; For[j=1,j
2,j++,For[l=1,lq,l++,For[kategorimin=2,kategoriminkategorimaks,kategorimin++,For [k=1,k
kategorimin,k++,{bakelas[j,l,kategorimin,k]=bbkelas[j,l,kategorimin,k]+selisih[j,l,kategori min,k]+0.0005,bbkelas[j,l,kategorimin,k+1]=bakelas[j,l,kategorimin,k]}]]]];
For[j=1,j 2,j++,For[l=1,lq,l++,For[kategorimin=2,kategoriminkategorimaks,kategorimin++,For
[k=1,k kategorimin,k++,fkelas[j,l,kategorimin,k]=Length[Select[contoh[j,l],bbkelas[j,l,kategorimi
n,k] bakelas[j,l,kategorimin,k]]]]]]]
For[j = 1, j = 2, j++, For[l = 1, l = q, l++, For[kategorimin = 2, kategorimin = kategorimaks, kategorimin++, jumlahfkelas[j, l, kategorimin] = Sum[fkelas[j,
l, kategorimin, k], {k, 1, kategorimin}]]]] For[j=1,j
2,j++,For[l=1,lq,l++,For[kategorimin=2,kategoriminkategorimaks,kategorimin++,For [k=1,k
kategorimin,k++,xtengah[j,l,kategorimin,k]=12 bbkelas[j,l,kategorimin,k]+bakelas[j,l,kategorimin,k]]]]]
For[j = 1, j = 2, j++, For[l = 1, l = q, l++, For[kategorimin = 2, kategorimin = kategorimaks, kategorimin++, For[k = 1, k = kategorimin, k++,xmean[j, l,
kategorimin] = N[Sum[xtengah[j, l, kategorimin, p]fkelas[j, l, kategorimin, p],
{p, 1, kategorimin}]Sum[fkelas[j, l, kategorimin, p], {p, 1, kategorimin}]]]]]]
For[j = 1, j = 2, j++, For[l = 1, l = q, l++, For[kategorimin = 2, kategorimin = kategorimaks, kategorimin++, For[k = 1, k = kategorimin, k++,{ragam[j, l,
kategorimin] = N[1Sum[fkelas[j, l, kategorimin, p], {p, 1, kategorimin}] - 1
Sum[fkelas[j, l, kategorimin, p]xtengah[j, l, kategorimin, p] - xmean[j, l, kategorimin]2, {p, 1, kategorimin}]]}]]]]
For[j=1,j
2,j++,For[l=1,lq,l++,For[kategorimin=2,kategoriminkategorimaks,
kategorimin++,For[k=1,k kategorimin,k++,datakat[j,l,kategorimin,k]={xtengah[j,l,kategorimin,k]
,fkelas[j,l,kategorimin,k]}]]]] datakl=Array[datakat,{2,q,kategorimaks-1,kategorimin-1},{1,1,2,1}];
For[j=1,j 2,j++,For[l=1,lq,l++,For[i=2,ikategorimaks,i++,datakl1[j,l,i]=
Take[datakl[[j]][[l]][[i-1]],i]]]]
2 kategori dari q contoh
For[j=1,j 2,j++,For[l=1,lq,l++,contoh[j,l,2]=Flatten[Append[ConstantArray
[datakl1[j,l,2][[1]][[1]],datakl1[j,l,2][[1]][[2]]],ConstantArray [datakl1[j,l,2][[2]][[1]],datakl1[j,l,2][[2]][[2]]]]]]]
3 kategori dari q contoh
For[j=1,j 2,j++,For[l=1,lq,l++,contoh[j,l,3]=Flatten[Append[{ConstantArray
[datakl1[j,l,3][[1]][[1]],datakl1[j,l,3][[1]][[2]]],ConstantArray [datakl1[j,l,3][[2]][[1]],datakl1[j,l,3][[2]][[2]]]},ConstantArray
[datakl1[j,l,3][[3]][[1]],datakl1[j,l,3][[3]][[2]]]]]]]
4 kategori dari q contoh
For[j=1,j 2,j++,For[l=1,lq,l++,contoh[j,l,4]=Flatten[Append[{{ConstantArray[datakl1[j,l,4][[1]]
[[1]],datakl1[j,l,4][[1]][[2]]],ConstantArray [datakl1[j,l,4][[2]][[1]],datakl1[j,l,4][[2]][[2]]]},ConstantArray[datakl1[j,l,4][[3]][[1]],datakl1[j,l,4
][[3]][[2]]]},ConstantArray[datakl1[j,l,4][[4]][[1]], datakl1[j,l,4][[4]][[2]]]]]]]
5 kategori dari q contoh
For[j=1,j 2,j++,For[l=1,lq,l++,contoh[j,l,5]=Flatten[Append[{{{ConstantArray[datakl1[j,l,5][[1]
][[1]],datakl1[j,l,5][[1]][[2]]],ConstantArray [datakl1[j,l,5][[2]][[1]],datakl1[j,l,5][[2]][[2]]]},ConstantArray
[datakl1[j,l,5][[3]][[1]],datakl1[j,l,5][[3]][[2]]]},ConstantArray [datakl1[j,l,5][[4]][[1]],datakl1[j,l,5][[4]][[2]]]},ConstantArray
[datakl1[j,l,5][[5]][[1]],datakl1[j,l,5][[5]][[2]]]]]]]
6 kategori dari q contoh
For[j=1,j 2,j++,For[l=1,lq,l++,contoh[j,l,6]=Flatten[Append[{{{{
ConstantArray[datakl1[j,l,6][[1]][[1]],datakl1[j,l,6][[1]][[2]]],ConstantArray [datakl1[j,l,6][[2]][[1]],datakl1[j,l,6][[2]][[2]]]},ConstantArray
[datakl1[j,l,6][[3]][[1]],datakl1[j,l,6][[3]][[2]]]},ConstantArray [datakl1[j,l,6][[4]][[1]],datakl1[j,l,6][[4]][[2]]]},ConstantArray
[datakl1[j,l,6][[5]][[1]],datakl1[j,l,6][[5]][[2]]]},ConstantArray [datakl1[j,l,6][[6]][[1]],datakl1[j,l,6][[6]][[2]]]]]]]
7 kategori dari q contoh
For[j=1,j 2,j++,For[l=1,lq,l++,contoh[j,l,7]=Flatten[Append[{{{{{
ConstantArray[datakl1[j,l,7][[1]][[1]],datakl1[j,l,7][[1]][[2]]],ConstantArray [datakl1[j,l,7][[2]][[1]],datakl1[j,l,7][[2]][[2]]]},ConstantArray
[datakl1[j,l,7][[3]][[1]],datakl1[j,l,7][[3]][[2]]]},ConstantArray [datakl1[j,l,7][[4]][[1]],datakl1[j,l,7][[4]][[2]]]},ConstantArray
[datakl1[j,l,7][[5]][[1]],datakl1[j,l,7][[5]][[2]]]},ConstantArray
[datakl1[j,l,7][[6]][[1]],datakl1[j,l,7][[6]][[2]]]},ConstantArray [datakl1[j,l,7][[7]][[1]],datakl1[j,l,7][[7]][[2]]]]]]]
8 kategori dari q contoh
For[j=1,j 2,j++,For[l=1,lq,l++,contoh[j,l,8]=Flatten[Append[{{{{{{
ConstantArray[datakl1[j,l,8][[1]][[1]],datakl1[j,l,8][[1]][[2]]],ConstantArray [datakl1[j,l,8][[2]][[1]],datakl1[j,l,8][[2]][[2]]]},ConstantArray
[datakl1[j,l,8][[3]][[1]],datakl1[j,l,8][[3]][[2]]]},ConstantArray [datakl1[j,l,8][[4]][[1]],datakl1[j,l,8][[4]][[2]]]},ConstantArray
[datakl1[j,l,8][[5]][[1]],datakl1[j,l,8][[5]][[2]]]},ConstantArray [datakl1[j,l,8][[6]][[1]],datakl1[j,l,8][[6]][[2]]]},ConstantArray
[datakl1[j,l,8][[7]][[1]],datakl1[j,l,8][[7]][[2]]]},ConstantArray [datakl1[j,l,8][[8]][[1]],datakl1[j,l,8][[8]][[2]]]]]]]
9 kategori dari q contoh
For[j=1,j 2,j++,For[l=1,lq,l++,contoh[j,l,9]=Flatten[Append[{{{{{{{
ConstantArray[datakl1[j,l,9][[1]][[1]],datakl1[j,l,9][[1]][[2]]],ConstantArray [datakl1[j,l,9][[2]][[1]],datakl1[j,l,9][[2]][[2]]]},ConstantArray
[datakl1[j,l,9][[3]][[1]],datakl1[j,l,9][[3]][[2]]]},ConstantArray [datakl1[j,l,9][[4]][[1]],datakl1[j,l,9][[4]][[2]]]},ConstantArray
[datakl1[j,l,9][[5]][[1]],datakl1[j,l,9][[5]][[2]]]},ConstantArray [datakl1[j,l,9][[6]][[1]],datakl1[j,l,9][[6]][[2]]]},ConstantArray
[datakl1[j,l,9][[7]][[1]],datakl1[j,l,9][[7]][[2]]]},ConstantArray [datakl1[j,l,9][[8]][[1]],datakl1[j,l,9][[8]][[2]]]},ConstantArray
[datakl1[j,l,9][[9]][[1]],datakl1[j,l,9][[9]][[2]]]]]]]
10 kategori dari q contoh
For[j=1,j 2,j++,For[l=1,lq,l++,contoh[j,l,10]=Flatten[Append[{{{{{{{{
ConstantArray[datakl1[j,l,10][[1]][[1]],datakl1[j,l,10][[1]][[2]]],ConstantArray [datakl1[j,l,10][[2]][[1]],datakl1[j,l,10][[2]][[2]]]},ConstantArray
[datakl1[j,l,10][[3]][[1]],datakl1[j,l,10][[3]][[2]]]},ConstantArray [datakl1[j,l,10][[4]][[1]],datakl1[j,l,10][[4]][[2]]]},ConstantArray
[datakl1[j,l,10][[5]][[1]],datakl1[j,l,10][[5]][[2]]]},ConstantArray [datakl1[j,l,10][[6]][[1]],datakl1[j,l,10][[6]][[2]]]},ConstantArray
[datakl1[j,l,10][[7]][[1]],datakl1[j,l,10][[7]][[2]]]},ConstantArray [datakl1[j,l,10][[8]][[1]],datakl1[j,l,10][[8]][[2]]]},ConstantArray
[datakl1[j,l,10][[9]][[1]],datakl1[j,l,10][[9]][[2]]]},ConstantArray [datakl1[j,l,10][[10]][[1]],datakl1[j,l,10][[10]][[2]]]]]]]
11 kategori dari q contoh
For[j=1,j 2,j++,For[l=1,lq,l++,contoh[j,l,11]=Flatten[Append[{{{{{{{{{
ConstantArray[datakl1[j,l,11][[1]][[1]],datakl1[j,l,11][[1]][[2]]],ConstantArray [datakl1[j,l,11][[2]][[1]],datakl1[j,l,11][[2]][[2]]]},ConstantArray
[datakl1[j,l,11][[3]][[1]],datakl1[j,l,11][[3]][[2]]]},ConstantArray [datakl1[j,l,11][[4]][[1]],datakl1[j,l,11][[4]][[2]]]},ConstantArray
[datakl1[j,l,11][[5]][[1]],datakl1[j,l,11][[5]][[2]]]},ConstantArray [datakl1[j,l,11][[6]][[1]],datakl1[j,l,11][[6]][[2]]]},ConstantArray
[datakl1[j,l,11][[7]][[1]],datakl1[j,l,11][[7]][[2]]]},ConstantArray [datakl1[j,l,11][[8]][[1]],datakl1[j,l,11][[8]][[2]]]},ConstantArray
[datakl1[j,l,11][[9]][[1]],datakl1[j,l,11][[9]][[2]]]},ConstantArray [datakl1[j,l,11][[10]][[1]],datakl1[j,l,11][[10]][[2]]]},ConstantArray
[datakl1[j,l,11][[11]][[1]],datakl1[j,l,11][[11]][[2]]]]]]]
12 kategori dari q contoh
For[j=1,j 2,j++,For[l=1,lq,l++,contoh[j,l,12]=Flatten[Append[{{{{{{{{{{
ConstantArray[datakl1[j,l,12][[1]][[1]],datakl1[j,l,12][[1]][[2]]],ConstantArray [datakl1[j,l,12][[2]][[1]],datakl1[j,l,12][[2]][[2]]]},ConstantArray
[datakl1[j,l,12][[3]][[1]],datakl1[j,l,12][[3]][[2]]]},ConstantArray [datakl1[j,l,12][[4]][[1]],datakl1[j,l,12][[4]][[2]]]},ConstantArray
[datakl1[j,l,12][[5]][[1]],datakl1[j,l,12][[5]][[2]]]},ConstantArray [datakl1[j,l,12][[6]][[1]],datakl1[j,l,12][[6]][[2]]]},ConstantArray
[datakl1[j,l,12][[7]][[1]],datakl1[j,l,12][[7]][[2]]]},ConstantArray [datakl1[j,l,12][[8]][[1]],datakl1[j,l,12][[8]][[2]]]},ConstantArray
[datakl1[j,l,12][[9]][[1]],datakl1[j,l,12][[9]][[2]]]},ConstantArray [datakl1[j,l,12][[10]][[1]],datakl1[j,l,12][[10]][[2]]]},ConstantArray
[datakl1[j,l,12][[11]][[1]],datakl1[j,l,12][[11]][[2]]]},ConstantArray [datakl1[j,l,12][[12]][[1]],datakl1[j,l,12][[12]][[2]]]]]]]
13 kategori dari q contoh
For[j=1,j 2,j++,For[l=1,lq,l++,contoh[j,l,13]=Flatten[Append[{{{{{{{{{{{
ConstantArray[datakl1[j,l,13][[1]][[1]],datakl1[j,l,13][[1]][[2]]],ConstantArray [datakl1[j,l,13][[2]][[1]],datakl1[j,l,13][[2]][[2]]]},ConstantArray
[datakl1[j,l,13][[3]][[1]],datakl1[j,l,13][[3]][[2]]]},ConstantArray [datakl1[j,l,13][[4]][[1]],datakl1[j,l,13][[4]][[2]]]},ConstantArray
[datakl1[j,l,13][[5]][[1]],datakl1[j,l,13][[5]][[2]]]},ConstantArray [datakl1[j,l,13][[6]][[1]],datakl1[j,l,13][[6]][[2]]]},ConstantArray
[datakl1[j,l,13][[7]][[1]],datakl1[j,l,13][[7]][[2]]]},ConstantArray [datakl1[j,l,13][[8]][[1]],datakl1[j,l,13][[8]][[2]]]},ConstantArray
[datakl1[j,l,13][[9]][[1]],datakl1[j,l,13][[9]][[2]]]},ConstantArray [datakl1[j,l,13][[10]][[1]],datakl1[j,l,13][[10]][[2]]]},ConstantArray
[datakl1[j,l,13][[11]][[1]],datakl1[j,l,13][[11]][[2]]]},ConstantArray [datakl1[j,l,13][[12]][[1]],datakl1[j,l,13][[12]][[2]]]},ConstantArray
[datakl1[j,l,13][[13]][[1]],datakl1[j,l,13][[13]][[2]]]]]]]
14 kategori dari q contoh
For[j=1,j 2,j++,For[l=1,lq,l++,contoh[j,l,14]=Flatten[Append[{{{{{{{{{{{{
ConstantArray[datakl1[j,l,14][[1]][[1]],datakl1[j,l,14][[1]][[2]]],ConstantArray [datakl1[j,l,14][[2]][[1]],datakl1[j,l,14][[2]][[2]]]},ConstantArray
[datakl1[j,l,14][[3]][[1]],datakl1[j,l,14][[3]][[2]]]},ConstantArray [datakl1[j,l,14][[4]][[1]],datakl1[j,l,14][[4]][[2]]]},ConstantArray
[datakl1[j,l,14][[5]][[1]],datakl1[j,l,14][[5]][[2]]]},ConstantArray [datakl1[j,l,14][[6]][[1]],datakl1[j,l,14][[6]][[2]]]},ConstantArray
[datakl1[j,l,14][[7]][[1]],datakl1[j,l,14][[7]][[2]]]},ConstantArray [datakl1[j,l,14][[8]][[1]],datakl1[j,l,14][[8]][[2]]]},ConstantArray
[datakl1[j,l,14][[9]][[1]],datakl1[j,l,14][[9]][[2]]]},ConstantArray [datakl1[j,l,14][[10]][[1]],datakl1[j,l,14][[10]][[2]]]},ConstantArray
[datakl1[j,l,14][[11]][[1]],datakl1[j,l,14][[11]][[2]]]},ConstantArray [datakl1[j,l,14][[12]][[1]],datakl1[j,l,14][[12]][[2]]]},ConstantArray
[datakl1[j,l,14][[13]][[1]],datakl1[j,l,14][[13]][[2]]]},ConstantArray [datakl1[j,l,14][[13]][[1]],datakl1[j,l,14][[14]][[2]]]]]]]
15 kategori dari q contoh
For[j=1,j 2,j++,For[l=1,lq,l++,contoh[j,l,15]=Flatten[Append[{{{{{{{{{{{{{
ConstantArray[datakl1[j,l,15][[1]][[1]],datakl1[j,l,15][[1]][[2]]],ConstantArray [datakl1[j,l,15][[2]][[1]],datakl1[j,l,15][[2]][[2]]]},ConstantArray
[datakl1[j,l,15][[3]][[1]],datakl1[j,l,15][[3]][[2]]]},ConstantArray [datakl1[j,l,15][[4]][[1]],datakl1[j,l,15][[4]][[2]]]},ConstantArray
[datakl1[j,l,15][[5]][[1]],datakl1[j,l,15][[5]][[2]]]},ConstantArray [datakl1[j,l,15][[6]][[1]],datakl1[j,l,15][[6]][[2]]]},ConstantArray
[datakl1[j,l,15][[7]][[1]],datakl1[j,l,15][[7]][[2]]]},ConstantArray [datakl1[j,l,15][[8]][[1]],datakl1[j,l,15][[8]][[2]]]},ConstantArray
[datakl1[j,l,15][[9]][[1]],datakl1[j,l,15][[9]][[2]]]},ConstantArray [datakl1[j,l,15][[10]][[1]],datakl1[j,l,15][[10]][[2]]]},ConstantArray
[datakl1[j,l,15][[11]][[1]],datakl1[j,l,15][[11]][[2]]]},ConstantArray [datakl1[j,l,15][[12]][[1]],datakl1[j,l,15][[12]][[2]]]},ConstantArray
[datakl1[j,l,15][[13]][[1]],datakl1[j,l,15][[13]][[2]]]},ConstantArray [datakl1[j,l,15][[13]][[1]],datakl1[j,l,15][[14]][[2]]]},ConstantArray
[datakl1[j,l,15][[13]][[1]],datakl1[j,l,15][[15]][[2]]]]]]]
Posisi Contoh dengan Ragam Nol
For[i=1,i q,i++,ragam21[i]=Variance[contoh[1,i,2]]];For[i=1,iq,i++,ragam31[i]=Variance[conto
h[1,i,3]]];For[i=1,i q,i++,ragam41[i]=Variance[contoh[1,i,4]]];
For[i=1,i q,i++,ragam51[i]=Variance[contoh[1,i,5]]];For[i=1,iq,i++,ragam61[i]=Variance[conto
h[1,i,6]]];For[i=1,i q,i++,ragam71[i]=Variance[contoh[1,i,7]]];
For[i=1,i q,i++,ragam81[i]=Variance[contoh[1,i,8]]];For[i=1,iq,i++,ragam91[i]=Variance[conto
h[1,i,9]]];For[i=1,i q,i++,ragam101[i]=Variance
[contoh[1,i,10]]];For[i=1,i q,i++,ragam111[i]=Variance[contoh[1,i,11]]];For[i=1,iq,i++,ragam12
1[i]=Variance[contoh[1,i,12]]];For[i=1,i q,i++,
ragam131[i]=Variance[contoh[1,i,13]]];For[i=1,i q,i++,ragam141[i]=
Variance[contoh[1,i,14]]]; For[i=1,i
q,i++,ragam151[i]=Variance[contoh[1,i,15]]]; For[i=1,i
q,i++,ragam22[i]=Variance[contoh[2,i,2]]];For[i=1,iq,i++, ragam32[i]=Variance[contoh[2,i,3]]];For[i=1,i
q,i++,ragam42[i]=Variance [contoh[2,i,4]]];For[i=1,i
q,i++,ragam52[i]=Variance[contoh[2,i,5]]]; For[i=1,i
q,i++,ragam62[i]=Variance[contoh[2,i,6]]];For[i=1,iq,i++,ragam72[i]=Variance[conto h[2,i,7]]];For[i=1,i
q,i++,ragam82[i]=Variance[contoh[2,i,8]]]; For[i=1,i
q,i++,ragam92[i]=Variance[contoh[2,i,9]]];For[i=1,iq,i++, ragam102[i]=Variance[contoh[2,i,10]]];For[i=1,i
q,i++,ragam112[i]=Variance [contoh[2,i,11]]];For[i=1,i
q,i++,ragam122[i]=Variance[contoh[2,i,12]]]; For[i=1,i
q,i++,ragam132[i]=Variance[contoh[2,i,13]]];For[i=1,iq,i++, ragam142[i]=Variance[contoh[2,i,14]]];For[i=1,i
q,i++,ragam152[i]= Variance[contoh[2,i,15]]];
rg12=Array[ragam21,q];rg13=Array[ragam31,q];rg14=Array[ragam41,q];rg15= Array[ragam51,q];rg16=Array[ragam61,q];rg17=Array[ragam71,q];rg18=Array
[ragam81,q];rg19=Array[ragam91,q];rg110=Array[ragam101,q];rg111=Array [ragam111,q];rg112=Array[ragam121,q];rg113=Array[ragam131,q];rg114=Array[ragam141,q];rg
115=Array[ragam151,q]; rg22=Array[ragam22,q];rg23=Array[ragam32,q];rg24=Array[ragam42,q];rg25=
Array[ragam52,q];rg26=Array[ragam62,q];rg27=Array[ragam72,q];rg28=Array [ragam82,q];rg29=Array[ragam92,q];rg210=Array[ragam102,q];rg211=Array
[ragam112,q];rg212=Array[ragam122,q];rg213=Array[ragam132,q];rg214=Array[ragam142,q];rg 215=Array[ragam152,q];
ragamnol1={Position[rg12,0`],Position[rg13,0`],Position[rg14,0`],Position [rg15,0`],Position[rg16,0`],Position[rg17,0`],Position[rg18,0`],Position[rg19,0`],
Position[rg110,0`],Position[rg111,0`],Position[rg112,0`],Position[rg113,0`], Position[rg114,0`],Position[rg115,0`]}
For[i=1,i kategorimaks-1,i++,Banyaknyaragamnol1[i]=Length[ragamnol1[[i]]]]
brnol1=Array[Banyaknyaragamnol1,kategorimaks-1] ragamnol2={Position[rg22,0`],Position[rg23,0`],Position[rg24,0`],Position
[rg25,0`],Position[rg26,0`],Position[rg27,0`],Position[rg28,0`],Position[rg29,0`], Position[rg210,0`],Position[rg211,0`],Position[rg212,0`],Position[rg213,0`],
Position[rg214,0`],Position[rg215,0`]} For[i=1,i
kategorimaks-1,i++,Banyaknyaragamnol2[i]=Length[ragamnol2[[i]]]] brnol2=Array[Banyaknyaragamnol2,kategorimaks-1]
Menggabungkan ragam nol populasi 1 2
For[i=1,i q,i++,ukurancontoh[i]=i]
Array[ukurancontoh,q]; For[i=2,i
kategorimaks,i++,gabunganragamnolkat[i]=Union [ragamnol1[[i-1]],ragamnol2[[i-1]]]]
ragamnolgab=Array[gabunganragamnolkat,kategorimaks-1,2]
Statistik dengan ragam nol nilainya di set menjadi nol
For[kategorimin=2,kategorimin kategorimaks,kategorimin++,For[l=1,lLength
[Flatten[ragamnolgab[[kategorimin1]],1]],l++, {xmean[1,Flatten[ragamnolgab[[kategorimin-1]],1][[l]],kategorimin]=0}]]
For[kategorimin=2,kategorimin kategorimaks,kategorimin++,For[l=1,lLength
[Flatten[ragamnolgab[[kategorimin1]],1]],l++, {xmean[2,Flatten[ragamnolgab[[kategorimin-1]],1][[l]],kategorimin]=0}]]
For[kategorimin=2,kategorimin kategorimaks,kategorimin++,For[l=1,lLength
[Flatten[ragamnolgab[[kategorimin1]],1]],l++, {ragam[1,Flatten[ragamnolgab[[kategorimin-1]],1][[l]],kategorimin]=0}]]
For[kategorimin=2,kategorimin kategorimaks,kategorimin++,For[l=1,lLength
[Flatten[ragamnolgab[[kategorimin1]],1]],l++, {ragam[2,Flatten[ragamnolgab[[kategorimin-1]],1][[l]],kategorimin]=0}]]
For[kategorimin=2,kategorimin kategorimaks,kategorimin++,For[l=1,lLength
[Flatten[ragamnolgab[[kategorimin1]],1]],l++, {spk[Flatten[ragamnolgab[[kategorimin-1]],1][[l]],kategorimin]=0}]]
For[kategorimin=2,kategorimin kategorimaks,kategorimin++,For[l=1,lLength
[Flatten[ragamnolgab[[kategorimin1]],1]],l++, {deltakategori[Flatten[ragamnolgab[[kategorimin-1]],1][[l]],kategorimin]=0}]]
For[kategorimin=2,kategorimin kategorimaks,kategorimin++,For[l=1,lLength
[Flatten[ragamnolgab[[kategorimin1]],1]],l++, {batasatas[Flatten[ragamnolgab[[kategorimin-1]],1][[l]],kategorimin]=0}]]
For[kategorimin=2,kategorimin kategorimaks,kategorimin++,For[l=1,lLength
[Flatten[ragamnolgab[[kategorimin1]],1]],l++,{batasbawah[Flatten[ragamnolgab[[kategorimin- 1]],1][[l]],kategorimin]=0}]]
Posisi contoh dengan ragam tidak nol dikumpulkan
For[i=1,i kategorimaks-
1,i++,posisiragamtdknol[i+1]=Delete[Array[ukurancontoh,q],ragamnolgab[[i]]]]
Menghitung Mean Margin of Error
For[kategorimin = 2, kategorimin = kategorimaks, kategorimin++, For[l = 1, l = Length[posisiragamtdknol[kategorimin]], l++,
{spk[posisiragamtdknol[kategorimin][[l]], kategorimin] =
Sqrt[jumlahfkelas[1, posisiragamtdknol[kategorimin][[l]], kategorimin] 1ragam[1, posisiragamtdknol[kategorimin][[l]], kategorimin] +
jumlahfkelas[2, posisiragamtdknol[kategorimin][[l]], kategorimin] - 1 ragam[2, posisiragamtdknol[kategorimin][[l]], kategorimin]
jumlahfkelas[1, posisiragamtdknol[kategorimin][[l]], kategorimin] - 1 + jumlahfkelas[2, posisiragamtdknol[kategorimin][[l]], kategorimin] - 1]}]]
For[kategorimin = 2, kategorimin = kategorimaks, kategorimin++, For[l = 1, l = Length[posisiragamtdknol[kategorimin]], l++,
{deltakategori[posisiragamtdknol[kategorimin][[l]], kategorimin] = N[talphaperduaspk[posisiragamtdknol[kategorimin][[l]], kategorimin]
Sqrt[1jumlahfkelas[1, posisiragamtdknol[kategorimin][[l]], kategorimin] + 1jumlahfkelas[2, posisiragamtdknol[kategorimin][[l]], kategorimin]]];
deltarerata[posisiragamtdknol[kategorimin][[l]], kategorimin] = xmean[1, posisiragamtdknol[kategorimin][[l]], kategorimin] -
xmean[2, posisiragamtdknol[kategorimin][[l]], kategorimin]; batasatas[posisiragamtdknol[kategorimin][[l]], kategorimin] =
deltarerata[posisiragamtdknol[kategorimin][[l]], kategorimin] + deltakategori[posisiragamtdknol[kategorimin][[l]], kategorimin];
batasbawah[posisiragamtdknol[kategorimin][[l]], kategorimin] = deltarerata[posisiragamtdknol[kategorimin][[l]], kategorimin] -
deltakategori[posisiragamtdknol[kategorimin][[l]], kategorimin]; keputusankategoriTrue[posisiragamtdknol[kategorimin][[l]], kategorimin] =
If[batasbawah[posisiragamtdknol[kategorimin][[l]], kategorimin] Subscript[
, 1] - Subscript[, 2] batasatas[posisiragamtdknol[kategorimin][[l]], kategorimin], True, False];
keputusankategoriFalse[posisiragamtdknol[kategorimin][[l]], kategorimin] = If[batasbawah[posisiragamtdknol[kategorimin][[l]], kategorimin] =
Subscript[ , 1] - Subscript[, 2] ||
Subscript[ , 1] - Subscript[, 2] =
batasatas[posisiragamtdknol[kategorimin][[l]], kategorimin], False, True]}]] For[i=1,i
kategorimaks1,i++,dalamkategori[i+1]=Count[Transpose[Array [keputusankategoriTrue,{q,kategorimaks-1},{1,2}]][[i]],True]]
For[i=1,i kategorimaks1,i++,luarkategori[i+1]=Count[Transpose[Array
[keputusankategoriFalse,{q,kategorimaks-1},{1,2}]][[i]],False]] For[j = 2, j = kategorimaks, j++, dkk[j] = 1Length[posisiragamtdknol[j]]
Total[Array[deltakategori, {q, 1}, {1, j}]]] dk=Flatten[Array[dkk,kategorimaks-1,2],1]
For[j = 2, j = kategorimaks, j++, batasatask[j] = 1Length[posisiragamtdknol[j]] Total[Array[batasatas, {q, 1}, {1, j}]]]
reratakatbatasatas=Flatten[Array[batasatask,kategorimaks-1,2],1]; For[j = 2, j = kategorimaks, j++, batasbawahk[j] = 1Length[posisiragamtdknol[j]]
Total[Array[batasbawah, {q, 1}, {1, j}]]] reratakatbatasbawah=Flatten[Array[batasbawahk,kategorimaks-1,2],1];
Jangkauankat=reratakatbatasatas-reratakatbatasbawah; Mencari Nilai P Value data kategori
For[i=1,i
Length[posisiragamtdknol[2]],i++,PValue[i,2]= TTest[{contoh[1,posisiragamtdknol[2][[i]],2],
contoh[2,posisiragamtdknol[2][[i]],2]}, 1-2,
PValue,SignificanceLevel 0.05,VerifyTestAssumptionsNone,
AlternativeHypothesis Unequal]]
For[i=1,i Length[posisiragamtdknol[3]],i++,PValue[i,3]=
TTest[{contoh[1,posisiragamtdknol[3][[i]],3], contoh[2,posisiragamtdknol[3][[i]],3]},
12, PValue,SignificanceLevel
0.05,VerifyTestAssumptionsNone, AlternativeHypothesis
Unequal]] For[i=1,i
Length[posisiragamtdknol[4]],i++,PValue[i,4]= TTest[{contoh[1,posisiragamtdknol[4][[i]],4],
contoh[2,posisiragamtdknol[4][[i]],4]}, 1-2,
PValue,SignificanceLevel 0.05,VerifyTestAssumptionsNone,
AlternativeHypothesis Unequal]]
For[i=1,i Length[posisiragamtdknol[5]],i++,PValue[i,5]=
TTest[{contoh[1,posisiragamtdknol[5][[i]],5], contoh[2,posisiragamtdknol[5][[i]],5]},
1-2, PValue,SignificanceLevel
0.05,VerifyTestAssumptionsNone, AlternativeHypothesis
Unequal]] For[i=1,i
Length[posisiragamtdknol[6]],i++,PValue[i,6]= TTest[{contoh[1,posisiragamtdknol[6][[i]],6],
contoh[2,posisiragamtdknol[6][[i]],6]}, 1-2,
PValue,SignificanceLevel 0.05,VerifyTestAssumptionsNone,
AlternativeHypothesis Unequal]]
For[i=1,i Length[posisiragamtdknol[7]],i++,PValue[i,7]=
TTest[{contoh[1,posisiragamtdknol[7][[i]],7], contoh[2,posisiragamtdknol[7][[i]],7]},
1-2, PValue,SignificanceLevel
0.05,VerifyTestAssumptionsNone, AlternativeHypothesis
Unequal]] For[i=1,i
Length[posisiragamtdknol[8]],i++,PValue[i,8]= TTest[{contoh[1,posisiragamtdknol[8][[i]],8],
contoh[2,posisiragamtdknol[8][[i]],8]}, 1-2,
PValue,SignificanceLevel 0.05,VerifyTestAssumptionsNone,
AlternativeHypothesis Unequal]]
For[i=1,i Length[posisiragamtdknol[9]],i++,PValue[i,9]=
TTest[{contoh[1,posisiragamtdknol[9][[i]],9], contoh[2,posisiragamtdknol[9][[i]],9]},
1-2, PValue,SignificanceLevel
0.05,VerifyTestAssumptionsNone, AlternativeHypothesis
Unequal]] For[i=1,i
Length[posisiragamtdknol[10]],i++,PValue[i,10]= TTest[{contoh[1,posisiragamtdknol[10][[i]],10],
contoh[2,posisiragamtdknol[10][[i]],10]}, 1-2,
PValue,SignificanceLevel 0.05,VerifyTestAssumptionsNone,
AlternativeHypothesis Unequal]]
For[i=1,i Length[posisiragamtdknol[11]],i++,PValue[i,11]=
TTest[{contoh[1,posisiragamtdknol[11][[i]],11], contoh[2,posisiragamtdknol[11][[i]],11]},
1-2, PValue,SignificanceLevel
0.05,VerifyTestAssumptionsNone, AlternativeHypothesis
Unequal]] For[i=1,i
Length[posisiragamtdknol[12]],i++,PValue[i,12]= TTest[{contoh[1,posisiragamtdknol[12][[i]],12],
contoh[2,posisiragamtdknol[12][[i]],12]}, 1-
2,PValue,SignificanceLevel0.05,VerifyTestAssumptionsNone, AlternativeHypothesis
Unequal]] For[i=1,i
Length[posisiragamtdknol[13]],i++,PValue[i,13]= TTest[{contoh[1,posisiragamtdknol[13][[i]],13],
contoh[2,posisiragamtdknol[13][[i]],13]}, 1-2,
PValue,SignificanceLevel 0.05,VerifyTestAssumptionsNone,
AlternativeHypothesis Unequal]]
For[i=1,i Length[posisiragamtdknol[14]],i++,PValue[i,14]=
TTest[{contoh[1,posisiragamtdknol[14][[i]],14], contoh[2,posisiragamtdknol[14][[i]],14]}, 1-2,
PValue,SignificanceLevel 0.05,VerifyTestAssumptionsNone,
AlternativeHypothesis Unequal]]
For[i=1,i Length[posisiragamtdknol[15]],i++,PValue[i,15]=
TTest[{contoh[1,posisiragamtdknol[15][[i]],15],
contoh[2,posisiragamtdknol[15][[i]],15]}, 1-2,
PValue,SignificanceLevel 0.05,VerifyTestAssumptionsNone,
AlternativeHypothesis Unequal]]
Mencari Rerata Nilai P Value dan Kesimpulan Uji T dari data kategori 2 sampai 15
NilaiPV[2]=Flatten[Array[PValue,{Length[posisiragamtdknol[2]],1},{1,2}],1]; NilaiPV[3]=Flatten[Array[PValue,{Length[posisiragamtdknol[3]],1},{1,3}],1];
NilaiPV[4]=Flatten[Array[PValue,{Length[posisiragamtdknol[4]],1},{1,4}],1]; NilaiPV[5]=Flatten[Array[PValue,{Length[posisiragamtdknol[5]],1},{1,5}],1];
NilaiPV[6]=Flatten[Array[PValue,{Length[posisiragamtdknol[6]],1},{1,6}],1]; NilaiPV[7]=Flatten[Array[PValue,{Length[posisiragamtdknol[7]],1},{1,7}],1];
NilaiPV[8]=Flatten[Array[PValue,{Length[posisiragamtdknol[8]],1},{1,8}],1]; NilaiPV[9]=Flatten[Array[PValue,{Length[posisiragamtdknol[9]],1},{1,9}],1];
NilaiPV[10]=Flatten[Array[PValue, {Length[posisiragamtdknol[10]],1},{1,10}],1];
NilaiPV[11]=Flatten[Array[PValue, {Length[posisiragamtdknol[11]],1},{1,11}],1];
NilaiPV[12]=Flatten[Array[PValue, {Length[posisiragamtdknol[12]],1},{1,12}],1];
NilaiPV[13]=Flatten[Array[PValue, {Length[posisiragamtdknol[13]],1},{1,13}],1];
NilaiPV[14]=Flatten[Array[PValue, {Length[posisiragamtdknol[14]],1},{1,14}],1];
NilaiPV[15]=Flatten[Array[PValue, {Length[posisiragamtdknol[15]],1},{1,15}],1];
NilaiP={Mean[NilaiPV[2]],Mean[NilaiPV[3]],Mean[NilaiPV[4]], Mean[NilaiPV[5]],Mean[NilaiPV[6]],Mean[NilaiPV[7]],
Mean[NilaiPV[8]],Mean[NilaiPV[9]],Mean[NilaiPV[10]], Mean[NilaiPV[11]],Mean[NilaiPV[12]],Mean[NilaiPV[13]],
Mean[NilaiPV[14]],Mean[NilaiPV[15]]}; For[i=1,i
kategorimaks-1,i++,kes[i]=If[NilaiP[[i]],Tolak H ,Terima H
]] kesimpulan=Array[kes,kategorimaks-1];
Kesimpulan Uji Nilai Tengah
For[i=1,i Length[posisiragamtdknol[2]],i++,PValueC[i,2]=
TTest[{contoh[1,posisiragamtdknol[2][[i]],2], contoh[2,posisiragamtdknol[2][[i]],2]},
1-2, ShortTestConclusion,SignificanceLevel
0.05,VerifyTestAssumptionsNone, AlternativeHypothesis
Unequal]] For[i=1,i
Length[posisiragamtdknol[3]],i++,PValueC[i,3]= TTest[{contoh[1,posisiragamtdknol[3][[i]],3],
contoh[2,posisiragamtdknol[3][[i]],3]}, 1-2,
ShortTestConclusion,SignificanceLevel 0.05,VerifyTestAssumptionsNone,
AlternativeHypothesis Unequal]]
For[i=1,i Length[posisiragamtdknol[4]],i++,PValueC[i,4]=
TTest[{contoh[1,posisiragamtdknol[4][[i]],4], contoh[2,posisiragamtdknol[4][[i]],4]},
1-2, ShortTestConclusion,SignificanceLevel
0.05,VerifyTestAssumptionsNone, AlternativeHypothesis
Unequal]] For[i=1,i
Length[posisiragamtdknol[5]],i++,PValueC[i,5]=
TTest[{contoh[1,posisiragamtdknol[5][[i]],5], contoh[2,posisiragamtdknol[5][[i]],5]},
1- 2,ShortTestConclusion,SignificanceLevel0.05,VerifyTestAssumptionsNone,
AlternativeHypothesis Unequal]]
For[i=1,i Length[posisiragamtdknol[6]],i++,PValueC[i,6]=
TTest[{contoh[1,posisiragamtdknol[6][[i]],6], contoh[2,posisiragamtdknol[6][[i]],6]},
1-2, ShortTestConclusion,SignificanceLevel
0.05,VerifyTestAssumptionsNone, AlternativeHypothesis
Unequal]] For[i=1,i
Length[posisiragamtdknol[7]],i++,PValueC[i,7]= TTest[{contoh[1,posisiragamtdknol[7][[i]],7],contoh[2,posisiragamtdknol[7][[i]],7]},
1-2, ShortTestConclusion,SignificanceLevel
0.05,VerifyTestAssumptionsNone, AlternativeHypothesis
Unequal]] For[i=1,i
Length[posisiragamtdknol[8]],i++,PValueC[i,8]= TTest[{contoh[1,posisiragamtdknol[8][[i]],8],
contoh[2,posisiragamtdknol[8][[i]],8]}, 1-2,
ShortTestConclusion,SignificanceLevel 0.05,VerifyTestAssumptionsNone,
AlternativeHypothesis Unequal]]
For[i=1,i Length[posisiragamtdknol[9]],i++,PValueC[i,9]=
TTest[{contoh[1,posisiragamtdknol[9][[i]],9], contoh[2,posisiragamtdknol[9][[i]],9]},
1-2, ShortTestConclusion,SignificanceLevel
0.05,VerifyTestAssumptionsNone, AlternativeHypothesis
Unequal]] For[i=1,i
Length[posisiragamtdknol[10]],i++,PValueC[i,10]= TTest[{contoh[1,posisiragamtdknol[10][[i]],10],contoh[2,posisiragamtdknol[10][[i]],10]},
1-2, ShortTestConclusion,SignificanceLevel
0.05,VerifyTestAssumptionsNone, AlternativeHypothesis
Unequal]] For[i=1,i
Length[posisiragamtdknol[11]],i++,PValueC[i,11]= TTest[{contoh[1,posisiragamtdknol[11][[i]],11],
contoh[2,posisiragamtdknol[11][[i]],11]}, 1-2,
ShortTestConclusion,SignificanceLevel 0.05,VerifyTestAssumptionsNone,
AlternativeHypothesis Unequal]]
For[i=1,i Length[posisiragamtdknol[11]],i++,PValueC[i,12]=
TTest[{contoh[1,posisiragamtdknol[12][[i]],12], contoh[2,posisiragamtdknol[11][[i]],12]},
1-2, ShortTestConclusion,SignificanceLevel
0.05,VerifyTestAssumptionsNone, AlternativeHypothesis
Unequal]] For[i=1,i
Length[posisiragamtdknol[13]],i++,PValueC[i,13]= TTest[{contoh[1,posisiragamtdknol[13][[i]],13],
contoh[2,posisiragamtdknol[13][[i]],13]}, 1-2,
ShortTestConclusion,SignificanceLevel 0.05,VerifyTestAssumptionsNone,
AlternativeHypothesis Unequal]]
For[i=1,i Length[posisiragamtdknol[14]],i++,PValueC[i,14]=
TTest[{contoh[1,posisiragamtdknol[14][[i]],14], contoh[2,posisiragamtdknol[14][[i]],14]},
1-2, ShortTestConclusion,SignificanceLevel
0.05,VerifyTestAssumptionsNone, AlternativeHypothesis
Unequal]] For[i=1,i
Length[posisiragamtdknol[15]],i++,PValueC[i,15]= TTest[{contoh[1,posisiragamtdknol[15][[i]],15],
contoh[2,posisiragamtdknol[15][[i]],15]}, 1-2,
ShortTestConclusion,SignificanceLevel 0.05,VerifyTestAssumptionsNone,
AlternativeHypothesis Unequal]]
For[i=1,i kategorimaks1,i++,Tolak[i]=
Count[Transpose[Array[PValueC,{q,kategorimaks-1},{1,2}]][[i]],Reject]] For[i=1,i
kategorimaks1,i++,Terima[i]=Count[Transpose[Array[PValueC,
{q,kategorimaks-1},{1,2}]][[i]],Do not reject]] For[i=1,i
kategorimaks-1,i++,data1[i]={i+1,dk[[i]]}] Show[ListLinePlot[Array[data1,kategorimaks-1],
PlotStyle {Thick,Red},AxesOriginAutomatic,PlotRange{0,25}],
Plot[reratagalat,{x,0,kategorimaks+1},PlotStyle {Thick,Blue}],
PlotLabel n == n1,AxesLabel-{kategori,mean margin of error}]
TableForm[Table[{q,talphaperdua,reratagalat,luarkontinu,dalamkontinu, luarkontinu+dalamkontinu,tolakk,terimak,tolakk+terimak,sbnol1,sbnol2},{1}],
TableHeadings {None,{banyaknya contoh,t
2
,mmoe,interval denganout 1-2 ,interval dengan 1-2,jumlah,tolak H
,terima H ,jumlah,
2 nol pop 1,2 nol pop 2}},TableAlignmentsCenter,TableSpacing{2,2}] TableForm[Table[{i,talphaperdua,luarkategori[i],dalamkategori[i],luarkategori[i]+dalamkategori[i
],Tolak[i-1],Terima[i-1],Tolak[i-1]+Terima[i-1],brnol1[[i- 1]],brnol2[[i1]]},{i,2,kategorimaks}],TableHeadings
{None,{kategori,t
2
,interval tanpa 1-
2 ,interval dengan 1-2,jumlah,tolak H ,terima H
,jumlah, 2 nol pop 1,2 nol
pop 2}}, TableAlignments
Center,TableSpacing{2,2}] TableForm[Table[{i,talphaperdua,dk[[i-1]],reratakatbatasbawah[[i-1]], reratakatbatasatas[[i-
1]],Jangkauankat[[i-1]],NilaiP[[i-1]],kesimpulan[[i-1]]}, {i,2,kategorimaks}],TableHeadings
{None,{kategori,t
2
,mmoe,rerata batas bawah ,rerata batas atas,panjang interval,
rerata p value,kesimpulan}}, TableAlignments Center,TableSpacing{2,2}]
Kategori dengan bias terkecil
Print[Bias terkecil dari kasus 1, normal, contoh berukuran n1 = ,n1 , dan n2 = ,n2 , adalah ,Min[dk] , berada pada kategori ke ,
Flatten[Flatten[Position[dk,Min[dk],1]]+1]] Clear[pt1,pt2,n1,n2];
Lampiran 2. Program Plot 3D dan Fit Fungsi
kategorimaks=15; dkmm10x=For[i=1,i
kategorimaks-1,i++, dkmm10y[i]=Import[C:\\Users\\DF\\Documents\\Draft31\\Lampiran 1 Kasus 1,
Normal\\Normal, kasus 1, 10 contoh.nb] [[1]][[104]][[1]][[1]][[2]][[1]][[1]][[1]][[2]][[1]][[2i-1]]]
reratagalat10=ToExpression[Import[C:\\Users\\DF\\Documents\\Draft31\\ Lampiran 1 Kasus 1, Normal\\Normal, kasus 1, 10 contoh.nb]
[[1]][[162]][[1]][[1]][[2]][[1]][[1]][[1]][[1]][[1]][[2]][[3]]] dkmm10=ToExpression[Array[dkmm10y,kategorimaks-1]]
us10={{2,dkmm10[[1]]},{3,dkmm10[[2]]},{4,dkmm10[[3]]},{5,dkmm10[[4]]}, {6,dkmm10[[5]]},{7,dkmm10[[6]]},{8,dkmm10[[7]]},{9,dkmm10[[8]]},
{10,dkmm10[[9]]},{11,dkmm10[[10]]},{12,dkmm10[[11]]},{13,dkmm10[[12]]},{14,dkmm10[[1 3]]},{15,dkmm10[[14]]}}
Show[ListLinePlot[us10,PlotStyle
{Thick,Red},PlotRange{0,25}], Plot[reratagalat10,{x,2,kategorimaks},PlotStyle
{Thick,Blue}], PlotLabel
n == 10,AxesOriginAutomatic,FrameTrue, FrameLabel
{Kategori,Mean Margin of Error}] dkmm20x=For[i=1,i
kategorimaks- 1,i++,dkmm20y[i]=Import[C:\\Users\\DF\\Documents\\Draft31\\Lampiran 1 Kasus 1,
Normal\\Normal, kasus 1, 20 contoh.nb] [[1]][[104]][[1]][[1]][[2]][[1]][[1]][[1]][[2]][[1]][[2i-1]]]
dkmm20=ToExpression[Array[dkmm20y,kategorimaks-1]] us20={{2,dkmm20[[1]]},{3,dkmm20[[2]]},{4,dkmm20[[3]]},{5,dkmm20[[4]]},
{6,dkmm20[[5]]},{7,dkmm20[[6]]},{8,dkmm20[[7]]},{9,dkmm20[[8]]}, {10,dkmm20[[9]]},{11,dkmm20[[10]]},{12,dkmm20[[11]]},{13,dkmm20[[12]]},{14,dkmm20[[1
3]]},{15,dkmm20[[14]]}} reratagalat20=ToExpression[Import[C:\\Users\\DF\\Documents\\Draft31\\
Lampiran 1 Kasus 1, Normal\\normal, kasus 1, 20 contoh.nb] [[1]][[162]][[1]][[1]][[2]][[1]][[1]][[1]][[1]][[1]][[2]][[3]]]
Show[ListLinePlot[us20,PlotStyle
{Thick,Red},PlotRange{0,20}], Plot[reratagalat20,{x,2,kategorimaks},PlotStyle
{Thick,Blue}], PlotLabel
n == 20,AxesOriginAutomatic,FrameTrue, FrameLabel
{Kategori,Mean Margin of Error}] dkmm30x=For[i=1,i
kategorimaks-1,i++, dkmm30y[i]=Import[C:\\Users\\DF\\Documents\\Draft31\\Lampiran 1 Kasus 1,
Normal\\Normal, kasus 1, 30 contoh.nb] [[1]][[104]][[1]][[1]][[2]][[1]][[1]][[1]][[2]][[1]][[2i- 1]]]
dkmm30=ToExpression[Array[dkmm30y,kategorimaks-1]] us30={{2,dkmm30[[1]]},{3,dkmm30[[2]]},{4,dkmm30[[3]]},{5,dkmm30[[4]]},
{6,dkmm30[[5]]},{7,dkmm30[[6]]},{8,dkmm30[[7]]},{9,dkmm30[[8]]}, {10,dkmm30[[9]]},{11,dkmm30[[10]]},{12,dkmm30[[11]]},{13,dkmm30[[12]]},{14,dkmm30[[1
3]]},{15,dkmm30[[14]]}} reratagalat30=ToExpression[Import[C:\\Users\\DF\\Documents\\Draft31\\
Lampiran 1 Kasus 1, Normal\\Normal, kasus 1, 30 contoh.nb][[1]][[162]][[1]][[1]][[2]][[1]][[1]][[1]][[1]][[1]][[2]][[3]]]
Show[ListLinePlot[us30,PlotStyle {Thick,Red},PlotRange{0,15}],
Plot[reratagalat30,{x,2,kategorimaks},PlotStyle {Thick,Blue}],
PlotLabel n == 30,AxesOriginAutomatic,FrameTrue,
FrameLabel {Kategori,Mean Margin of Error}]
dkmm100x=For[i=1,i kategorimaks-1,i++,
dkmm100y[i]=Import[C:\\Users\\DF\\Documents\\Draft31\\ Lampiran 1 Kasus 1, Normal\\Normal, kasus 1, 100 contoh.nb]
[[1]][[104]][[1]][[1]][[2]][[1]][[1]][[1]][[2]][[1]][[2i-1]]] dkmm100=ToExpression[Array[dkmm100y,kategorimaks-1]]
us100={{2,dkmm100[[1]]},{3,dkmm100[[2]]},{4,dkmm100[[3]]}, {5,dkmm100[[4]]},{6,dkmm100[[5]]},{7,dkmm100[[6]]},{8,dkmm100[[7]]},
{9,dkmm100[[8]]},{10,dkmm100[[9]]},{11,dkmm100[[10]]}, {12,dkmm100[[11]]},{13,dkmm100[[12]]},{14,dkmm100[[13]]},
{15,dkmm100[[14]]}} reratagalat100=ToExpression[Import[C:\\Users\\DF\\Documents\\Draft31\\
Lampiran 1 Kasus 1, Normal\\Normal, kasus 1, 100 contoh.nb] [[1]][[162]][[1]][[1]][[2]][[1]][[1]][[1]][[1]][[1]][[2]][[3]]]
Show[ListLinePlot[us100,PlotStyle
{Thick,Red},PlotRange{0,8}], Plot[reratagalat100,{x,2,kategorimaks},PlotStyle
{Thick,Blue}], PlotLabel
n == 100,AxesOriginAutomatic,FrameTrue, FrameLabel
{Kategori,Mean Margin of Error}] dkmm200x=For[i=1,i
kategorimaks- 1,i++,dkmm200y[i]=Import[C:\\Users\\DF\\Documents\\Draft31\\
Lampiran 1 Kasus 1, Normal\\Normal, kasus 1, 200 contoh.nb] [[1]][[104]][[1]][[1]][[2]][[1]][[1]][[1]][[2]][[1]][[2i-1]]]
dkmm200=ToExpression[Array[dkmm200y,kategorimaks-1]] us200={{2,dkmm200[[1]]},{3,dkmm200[[2]]},{4,dkmm200[[3]]},
{5,dkmm200[[4]]},{6,dkmm200[[5]]},{7,dkmm200[[6]]},{8,dkmm200[[7]]}, {9,dkmm200[[8]]},{10,dkmm200[[9]]},{11,dkmm200[[10]]},
{12,dkmm200[[11]]},{13,dkmm200[[12]]},{14,dkmm200[[13]]}, {15,dkmm200[[14]]}}
reratagalat200=ToExpression[Import[C:\\Users\\DF\\Documents\\Draft31\\ Lampiran 1 Kasus 1, Normal\\Normal, kasus 1, 200 contoh.nb]
[[1]][[162]][[1]][[1]][[2]][[1]][[1]][[1]][[1]][[1]][[2]][[3]]] Show[ListLinePlot[us200,PlotStyle
{Thick,Red},PlotRange{0,6}], Plot[reratagalat200,{x,2,kategorimaks},PlotStyle
{Thick,Blue}], PlotLabel
n == 200,AxesOriginAutomatic,FrameTrue, FrameLabel
{Kategori,Mean Margin of Error}] dkmm300x=For[i=1,i
kategorimaks- 1,i++,dkmm300y[i]=Import[C:\\Users\\DF\\Documents\\Draft31\\
Lampiran 1 Kasus 1, Normal\\Normal, kasus 1, 300 contoh.nb] [[1]][[104]][[1]][[1]][[2]][[1]][[1]][[1]][[2]][[1]][[2i-1]]]
dkmm300=ToExpression[Array[dkmm300y,kategorimaks-1]] us300={{2,dkmm300[[1]]},{3,dkmm300[[2]]},{4,dkmm300[[3]]},
{5,dkmm300[[4]]},{6,dkmm300[[5]]},{7,dkmm300[[6]]},{8,dkmm300[[7]]},{9,dkmm300[[8]]}, {10,dkmm300[[9]]},{11,dkmm300[[10]]},{12,dkmm300[[11]]},{13,dkmm300[[12]]},{14,dkmm3
00[[13]]},{15,dkmm300[[14]]}} reratagalat300=ToExpression[Import[C:\\Users\\DF\\Documents\\Draft31\\
Lampiran 1 Kasus 1, Normal\\Normal, kasus 1, 300 contoh.nb] [[1]][[162]][[1]][[1]][[2]][[1]][[1]][[1]][[1]][[1]][[2]][[3]]]
Show[ListLinePlot[us300,PlotStyle
{Thick,Red},PlotRange{0,6}], Plot[reratagalat300,{x,2,kategorimaks},PlotStyle
{Thick,Blue}],
PlotLabel n == 300,AxesOriginAutomatic,FrameTrue,
FrameLabel {Kategori,Mean Margin of Error}]
dkmm400x=For[i=1,i kategorimaks-
1,i++,dkmm400y[i]=Import[C:\\Users\\DF\\Documents\\Draft31\\ Lampiran 1 Kasus 1, Normal\\Normal, kasus 1, 400 contoh.nb]
[[1]][[104]][[1]][[1]][[2]][[1]][[1]][[1]][[2]][[1]][[2i-1]]] dkmm400=ToExpression[Array[dkmm400y,kategorimaks-1]]
us400={{2,dkmm400[[1]]},{3,dkmm400[[2]]},{4,dkmm400[[3]]}, {5,dkmm400[[4]]},{6,dkmm400[[5]]},{7,dkmm400[[6]]},{8,dkmm400[[7]]},
{9,dkmm400[[8]]},{10,dkmm400[[9]]},{11,dkmm400[[10]]}, {12,dkmm400[[11]]},{13,dkmm400[[12]]},{14,dkmm400[[13]]},
{15,dkmm400[[14]]}} reratagalat400=ToExpression[Import[C:\\Users\\DF\\Documents\\Draft31\\
Lampiran 1 Kasus 1, Normal\\Normal, kasus 1, 400 contoh.nb] [[1]][[162]][[1]][[1]][[2]][[1]][[1]][[1]][[1]][[1]][[2]][[3]]]
Show[ListLinePlot[us400,PlotStyle
{Thick,Red},PlotRange{0,25}],Plot[reratagalat400,{x,2,k ategorimaks},PlotStyle
{Thick,Blue}], PlotLabel
n == 400,AxesOriginAutomatic,FrameTrue, FrameLabel
{Kategori,Mean Margin of Error}] dkmm500x=For[i=1,i
kategorimaks-1,i++, dkmm500y[i]=Import[C:\\Users\\DF\\Documents\\Draft31\\
Lampiran 1 Kasus 1, Normal\\Normal, kasus 1, 500 contoh.nb] [[1]][[104]][[1]][[1]][[2]][[1]][[1]][[1]][[2]][[1]][[2i-1]]]
dkmm500=ToExpression[Array[dkmm500y,kategorimaks-1]] us500={{2,dkmm500[[1]]},{3,dkmm500[[2]]},{4,dkmm500[[3]]},
{5,dkmm500[[4]]},{6,dkmm500[[5]]},{7,dkmm500[[6]]},{8,dkmm500[[7]]}, {9,dkmm500[[8]]},{10,dkmm500[[9]]},{11,dkmm500[[10]]},
{12,dkmm500[[11]]},{13,dkmm500[[12]]},{14,dkmm500[[13]]}, {15,dkmm500[[14]]}} reratagalat500=ToExpression[Import[C:\\Users\\DF\\Documents\\Draft31\\ Lampiran 1 Kasus 1,
Normal\\Normal, kasus 1, 500 contoh.nb] [[1]][[162]][[1]][[1]][[2]][[1]][[1]][[1]][[1]][[1]][[2]][[3]]]
Show[ListLinePlot[us500,PlotStyle
{Thick,Red},PlotRange{0,25}], Plot[reratagalat500,{x,0,kategorimaks+1},PlotStyle
{Thick,Blue}], PlotLabel
n == 500,AxesOriginAutomatic,FrameTrue, FrameLabel
{Kategori,Mean Margin of Error}] For[ii=2,ii
kategorimaks,ii++,kat[ii]={{10,dkmm10[[ii-1]]}, {20,dkmm20[[ii-1]]},{30,dkmm30[[ii-1]]},{100,dkmm100[[ii-1]]}, {200,dkmm200[[ii-
1]]},{300,dkmm300[[ii-1]]}, {400,dkmm400[[ii-1]]},{500,dkmm500[[ii-1]]}}]
For[ii=1,ii
kategorimaks-1,ii++,gambarkat[ii+1]=Show[ListLinePlot[kat[ii+1], PlotStyle
{PointSize[Medium],Red}], FrameTrue, FrameLabel-{Ukuran Contoh,Mean Margin of Error},
BaseStyle-{FontWeight-Normal,FontSize 14},
PlotLabel {ii+1}kategori, AxesOriginAutomatic,PlotRange{0,25}]]
gambarkat[2] gambarkat[3]
gambarkat[4] gambarkat[5]
gambarkat[6] gambarkat[7]
gambarkat[8] gambarkat[9]
gambarkat[10]
gambarkat[11] gambarkat[12]
gambarkat[13] gambarkat[14]
gambarkat[15] Ukuran={10,20,30,100,200,300,400,500};
For[ii=2,ii
kategorimaks,ii++,{Bmaks[ii]=Max[Take[kat[ii],Length[kat[ii]],-1]], Bmin[ii]=Min[Take[kat[ii],Length[kat[ii]],-1]]}];
For[ii=2,ii kategorimaks,ii++,{Umaks[ii]=Ukuran[[Position[kat[ii],
Bmaks[ii]][[1,1]]]],Umin[ii]=Ukuran[[Position[kat[ii],Bmin[ii]][[1,1]]]]}];
Mean Margin of Error
TableForm[Table[{jj,kat[jj][[1,2]],kat[jj][[2,2]],kat[jj][[3,2]],kat[jj][[4,2]], kat[jj][[5,2]],kat[jj][[6,2]],kat[jj][[7,2]],kat[jj][[8,2]],Bmin[jj],Umin[jj],Bmaks[jj],Umaks[jj]},{jj,2,
kategorimaks}], TableHeadings
{None,{kategori,10,20,30,100,200,300,400, 500,Bias Minimum ,Ukuran Contoh,Bias Maksimum ,Ukuran
Contoh}},TableAlignments Center,TableSpacing{2,2}]
For[ii=2,ii kategorimaks,ii++,datan3[ii]={{10,ii,dkmm10[[ii-1]]},{20,ii,dkmm20[[ii-
1]]},{30,ii,dkmm30[[ii-1]]},{100,ii,dkmm100[[ii-1]]}, {200,ii,dkmm200[[ii- 1]]},{300,ii,dkmm300[[ii-1]]},{400,ii,dkmm400[[ii-1]]}, {500,ii,dkmm500[[ii-1]]}}]
gambar3n=Flatten[Array[datan3,kategorimaks-1,2],1]; ListPlot3D[gambar3n, AxesLabel-{Ukuran Contoh,Kategori,Mean Margin of
Error},PlotRange
{0,25}] For[i=1,i
Length[gambar3n],i++,t[i]=Flatten[{Partition[gambar3n[[i]],2], gambar3n[[i,3]]},1]]
Interepolasi
f=Interpolation[Array[t,Length[gambar3n]],InterpolationOrder 1]
Show[{Plot3D[f[x,y],{x,10,500},{y,2,15},AxesLabel-{Ukuran Contoh,Kategori,Mean Margin of Error},PlotRange
{0,25}]}]
Mencari Fungsi Pendekatan nlm=NonlinearModelFit[gambar3n,c Exp[-a n -b k],{a,b,c},{n,k}]
gambar=Normal[] nlm[10,2]
Plot3D[gambar,{n,0,500},{k,2,15},AxesLabel-{Ukuran
Sampel,Kategori,Mean Margin of Error},PlotRange {0,20}]
ClearAll;
Lampiran 3. Hasil untuk Kasus 1 Normal
,
Tabel 5 Kasus 1, Normal, 1000 set data berukuran 10
Kategori Interval
tanpa Interval
dengan Jumlah
Tolak Terima
Jumlah nol
pop 1 nol
pop 2 2
43 954
997 43
954 997
3 3
49 864
913 49
864 913
47 41
4 49
950 999
49 950
999 1
5 54
946 1000
54 946
1000 6
51 949
1000 51
949 1000
7 51
949 1000
51 949
1000 8
58 942
1000 58
942 1000
9 58
942 1000
58 942
1000 10
55 945
1000 55
945 1000
11 53
947 1000
53 947
1000 12
50 950
1000 50
950 1000
13 56
944 1000
56 944
1000 14
56 944
1000 56
944 1000
15 51
949 1000
51 949
1000 Data
Awal 58
942 1000
58 942
1000
Tabel 6 Rerata panjang interval kepercayaan
Kategori Rerata
Batas Bawah Rerata
Batas Atas Panjang
Interval 2
-23,421 23,345
46,842 3
-16,088 16,402
32,489 4
-15,322 15,356
30,678 5
-14,865 14,781
29,646 6
-14,442 14,524
28,966 7
-14,228 14,383
28,610 8
-14,163 14,222
28,385 9
-14,082 14,104
28,186 10
-14,038 14,052
28,090 11
-14,009 13,958
27,968 12
-13,927 14,024
27,952 13
-13,975 13,878
27,853 14
-13,893 13,992
27,884 15
-13,906 13,938
27,845
Tabel 7 Kasus 1, Normal, 1000 set data berukuran 20
Kategori Interval
tanpa Interval
dengan Jumlah
Tolak Terima
Jumlah nol
pop 1 nol
pop 2 2
48 952
1000 38
962 1000
3 69
928 997
55 942
997 2
1 4
51 949
1000 49
951 1000
5 53
947 1000
47 953
1000
6 56
944 1000
45 955
1000 7
63 937
1000 52
948 1000
8 51
949 1000
44 956
1000 9
60 940
1000 50
950 1000
10 62
938 1000
50 950
1000 11
53 947
1000 47
953 1000
12 60
940 1000
50 950
1000 13
58 942
1000 51
949 1000
14 63
937 1000
48 952
1000 15
63 937
1000 50
950 1000
Data Awal
54 946
1000 49
951 1000
Tabel 8 Rerata panjang interval kepercayaan
Kategori Rerata
Batas Bawah Rerata
Batas Atas Panjang
Interval 2
-15,152 15,837
30,990 3
-10,867 10,329
21,196 4
-10,098 10,268
20,367 5
-9,735 9,919
19,654 6
-9,710 9,662
19,373 7
-9,441 9,602
19,043 8
-9,504 9,389
18,894 9
-9,381 9,453
18,835 10
-9,292 9,427
18,720 11
-9,295 9,383
18,679 12
-9,291 9,337
18,628 13
-9,272 9,313
18,585 14
-9,241 9,321
18,563 15
-9,199 9,325
18,525
Tabel 9 Kasus 1, Normal, 1000 set data berukuran 30
Kategori Interval
tanpa Interval
dengan Jumlah
Tolak Terima
Jumlah nol
pop 1 nol
pop 2 2
57 943
1000 57
943 1000
3 52
948 1000
43 957
1000 4
53 947
1000 46
954 1000
5 60
940 1000
57 943
1000 6
52 948
1000 50
950 1000
7 55
945 1000
51 949
1000 8
53 947
1000 50
950 1000
9 52
948 1000
48 952
1000 10
53 947
1000 45
955 1000
11 59
941 1000
56 944
1000 12
57 943
1000 48
952 1000
13 56
944 1000
49 951
1000 14
56 944
1000 48
952 1000
15 61
939 1000
48 952
1000 Data
Awal 56
944 1000
49 951
1000
Tabel 10 Rerata panjang interval kepercayaan
Kategori Rerata
Batas Bawah Rerata
Batas Atas Panjang
Interval 2
-12,244 13,057
25,302 3
-8,739 8,617
17,356 4
--8,240 8,465
16,706
5 -8,089
8,089 16,178
6 -7,829
8,016 15,845
7 -7,826
7,828 15,654
8 -7,718
7,783 15,501
9 -7,734
7,696 15,431
10 -7,658
7,725 15,383
11 -7,655
7,660 15,316
12 -7,576
7,699 15,275
13 -7,628
7,629 15,257
14 -7,572
7,660 15,233
15 -7,608
7,615 15,223
Tabel 11 Kasus 1, Normal, 1000 set data berukuran 100
Kategori Interval
tanpa Interval
dengan Jumlah
Tolak Terima
Jumlah nol
pop 1 nol
pop 2 2
58 942
1000 58
942 1000
3 54
946 1000
51 949
1000 4
44 956
1000 42
958 1000
5 49
951 1000
47 953
1000 6
53 947
1000 51
949 1000
7 49
951 1000
47 953
1000 8
51 949
1000 51
949 1000
9 53
947 1000
50 950
1000 10
53 947
1000 51
949 1000
11 53
947 1000
52 948
1000 12
52 948
1000 51
949 1000
13 52
948 1000
50 950
1000 14
54 946
1000 52
948 1000
15 56
944 1000
53 947
1000 Data
Awal 54
946 1000
52 948
1000
Tabel 12 Rerata panjang interval kepercayaan
Kategori Rerata
Batas Bawah Rerata
Batas Atas Panjang
Interval 2
-6,892 6,970
13,863 3
-4,660 4,812
9,472 4
-4,492 4,671
9,164 5
-4,348 4,502
8,850 6
-4,271 4,386
8,658 7
-4,207 4,355
8,562 8
-4,171 4,314
8,486 9
-4,127 4,302
8,429 10
-4,122 4,285
8,408 11
-4,097 4,273
8,370 12
-4,111 4,240
8,352 13
-4,080 4,255
8,335 14
-4,088 4,238
8,327 15
-4,074 4,241
8,315
Tabel 13 Kasus 1, Normal, 1000 set data berukuran 200
Kategori Interval
tanpa Interval
dengan Jumlah
Tolak Terima
Jumlah nol
pop 1 nol
pop 2 2
61 939
1000 61
939 1000
3 58
942 1000
58 942
1000
4 61
939 1000
61 939
1000 5
56 944
1000 55
945 1000
6 55
945 1000
55 945
1000 7
49 951
1000 47
953 1000
8 53
947 1000
52 948
1000 9
57 943
1000 56
944 1000
10 58
942 1000
58 942
1000 11
50 950
1000 49
951 1000
12 60
940 1000
59 941
1000 13
54 946
1000 54
946 1000
14 57
943 1000
57 943
1000 15
62 938
1000 60
940 1000
Data Awal
61 939
1000 60
940 1000
Tabel 14 Rerata panjang interval kepercayaan
Kategori Rerata
Batas Bawah Rerata
Batas Atas Panjang
Interval 2
-4,955 4,843
9,,799 3
-3,381 3,347
6,729 4
-3,272 3,220
6,493 5
-3,136 3,122
6,659 6
-3,100 3,041
6,141 7
-3,042 3,029
6,071 8
-3,032 2,981
6,014 9
-3,006 2,973
5,979 10
-2,998 2,958
5,956 11
-2,994 2,943
5,938 12
-2,974 2,947
5,922 13
-2,971 2,943
5,915 14
-2,973 2,932
5,905 15
-2,965 2,931
5,896
Tabel 15 Kasus 1, Normal, 1000 set data berukuran 300
Kategori Interval
tanpa Interval
dengan Jumlah
Tolak Terima
Jumlah nol
pop 1 nol
pop 2 2
70 930
1000 66
934 1000
3 48
952 1000
48 952
1000 4
59 941
1000 59
941 1000
5 56
944 1000
56 944
1000 6
55 945
1000 55
945 1000
7 48
952 1000
48 952
1000 8
57 943
1000 56
944 1000
9 58
942 1000
58 942
1000 10
60 940
1000 60
940 1000
11 58
942 1000
58 942
1000 12
61 939
1000 61
939 1000
13 62
938 1000
60 940
1000 14
60 940
1000 60
940 1000
15 62
938 1000
61 939
1000 Data
Awal 62
938 1000
62 938
1000
Tabel 16 Rerata panjang interval kepercayaan
Kategori Rerata
Batas Bawah Rerata
Batas Atas Panjang
Interval 2
-4,000 4,000
8,001 3
-2,713 2,795
5,509
4 -2,654
2,653 5,307
5 -2,538
2,580 5,118
6 -2,498
2,522 5,021
7 -2,461
2,496 4,958
8 -2,436
2,475 4,912
9 -2,417
2,470 4,887
10 -2,416
2,451 4,868
11 -2,409
2,443 4,852
12 -2,408
2,433 4,841
13 -2,386
2,444 4,830
14 -2,391
2,433 4,824
15 -2,389
2,430 4,819
Tabel 17 Kasus 1, Normal, 1000 set data berukuran 400
Kategori Interval
tanpa Interval
dengan Jumlah
Tolak Terima
Jumlah nol
pop 1 nol
pop 2 2
50 950
1000 50
950 1000
3 41
959 1000
41 959
1000 4
45 955
1000 45
955 1000
5 42
958 1000
42 958
1000 6
46 954
1000 46
954 1000
7 43
957 1000
43 957
1000 8
48 952
1000 48
952 1000
9 41
959 1000
41 959
1000 10
43 957
1000 43
957 1000
11 48
952 1000
48 952
1000 12
42 958
1000 42
958 1000
13 42
958 1000
42 958
1000 14
47 953
1000 47
953 1000
15 43
957 1000
42 958
1000 Data
Awal 43
957 1000
43 957
1000
Tabel 18 Rerata panjang interval kepercayaan
Kategori Rerata
Batas Bawah Rerata
Batas Atas Panjang
Interval 2
-3,466 3,463
6,929 3
-2,388 2,371
4,759 4
-2,294 2,295
4,589 5
-2,240 2,187
4,427 6
-2,173 2, 168
4,341 7
-2,147 2,138
4,285 8
-2,152 2,096
4,248 9
-2,122 2,104
4,227 10
-2,122 2,086
4,209 11
-2,116 2,079
4,196 12
-2,101 2,085
4,186 13
-2,105 2,072
4,178 14
-2,104 2,068
4,172 15
-2,095 2,072
4,167
Tabel 19 Kasus 1, Normal, 1000 set data berukuran 500
Kategori Interval
tanpa Interval
dengan Jumlah
Tolak Terima
Jumlah nol
pop 1 nol
pop 2
2 47
953 1000
47 953
1000 3
46 954
1000 46
954 1000
4 39
961 1000
39 961
1000 5
51 949
1000 50
950 1000
6 38
962 1000
38 962
1000 7
52 948
1000 52
948 1000
8 37
963 1000
37 963
1000 9
45 955
1000 45
955 1000
10 46
954 1000
45 955
1000 11
48 952
1000 47
953 1000
12 46
954 1000
46 954
1000 13
47 953
1000 47
953 1000
14 45
955 1000
44 956
1000 15
46 954
1000 49
951 1000
Data Awal
46 954
1000 45
955 1000
Tabel 20 Rerata panjang interval kepercayaan
Kategori Rerata
Batas Bawah Rerata
Batas Atas Panjang
Interval 2
-3,031 3,166
6,198 3
-2,089 2,168
4,257 4
-2,032 2,077
4,110 5
-1,946 2,016
3,963 6
-1,904 1,980
3,884 7
-1,903 1,934
3,838 8
-1,876 1,929
3,805 9
-1,877 1,906
3,783 10
-1,850 1,917
3,768 11
-1,863 1,892
3,747 12
-1,852 1,894
3,742 13
-1,858 1,884
3,742 14
-1,843 1,892
3,735 15
-1,839 1,891
3,730
Lampiran 4. Hasil untuk Kasus 3 Poisson,
Tabel 21 Kasus 1, Poisson, 1000 set data berukuran 10
Kategori Interval
tanpa Interval
dengan Jumlah
Tolak Terima
Jumlah nol
pop 1 nol
pop 2 2
38 957
995 38
957 995
3 2
3 38
38 38
38 817
816 4
38 957
995 38
957 995
3 2
5 25
639 664
25 639
664 186
179 6
35 960
995 35
960 995
3 2
7 54
868 922
54 868
922 38
41 8
49 951
1000 49
951 1000
9 55
937 992
55 937
992 3
5 10
58 942
1000 58
942 1000
11 51
947 998
51 947
998 1
1 12
55 945
1000 45
953 998
13 62
938 1000
62 938
1000 14
58 942
1000 58
942 1000
15 59
941 1000
59 941
1000 Data
Awal 59
941 1000
59 941
1000
Tabel 22 Rerata panjang interval kepercayaan
Kategori Rerata
Batas Bawah Rerata
Batas Atas Panjang
Interval 2
-23,669 23,066
46,736 3
-10,254 10,254
20,509 4
-11,879 11,537
23,416 5
-8,128 7,868
15,996 6
-8,428 8,284
16,712 7
-7,352 7,209
14,562 8
-7,478 7,200
14,678 9
-7,327 7,136
14,464 10
-7,187 6,881
14,068 11
-7,148 6,884
14,032 12
-6,917 6,722
13,640 13
-7,152 6,764
13,917 14
-6,697 6,523
13,221 15
-6,898 6,556
13,454
Tabel 23 Kasus 1, Poisson, 1000 set data berukuran 20
Kategori Interval
tanpa Interval
dengan Jumlah
Tolak Terima
Jumlah nol
pop 1 nol
pop 2
2 40
960 1000
28 972
1000 3
1 113
114 1
113 114
683 659
4 40
960 1000
29 971
1000 5
64 879
943 55
888 943
30 28
6 47
953 1000
40 960
1000 7
60 939
999 49
950 999
1 8
41 959
1000 39
961 1000
9 61
939 1000
55 945
1000 10
54 946
1000 44
956 1000
11 54
946 1000
49 951
1000 12
54 946
1000 41
959 1000
13 58
942 1000
49 951
1000 14
54 946
1000 46
954 1000
15 67
933 1000
59 941
1000 Data
Awal 61
939 1000
51 949
1000
Tabel 24 Rerata panjang interval kepercayaan
Kategori Rerata
Batas Bawah Rerata
Batas Atas Panjang
Interval 2
-15,467 15,497
30,964 3
-4,716 5,301
10,018 4
-7,742 7,757
15,500 5
-5,004 4,893
9,897 6
-5,517 5,577
11,095 7
-4,798 4,767
9,566 8
-4,892 4,943
9,835 9
-4,779 4,874
9,653 10
-4,724 4,690
9,415 11
-4,653 4,759
9,413 12
-4,557 4,581
9,138 13
-4,663 4,666
9,329 14
-4,407 4,431
8,838 15
-4,512 4,503
9,015
Tabel 25 Kasus 1, Poisson, 1000 set data berukuran 30
Kategori Interval
tanpa Interval
dengan Jumlah
Tolak Terima
Jumlah nol
pop 1 nol
pop 2 2
54 946
1000 53
947 1000
3 2
200 202
2 200
202 551
561 4
55 945
1000 53
947 1000
5 50
938 988
47 941
988 7
6 6
57 943
1000 51
949 1000
7 58
942 1000
54 946
1000 8
55 945
1000 49
951 1000
9 56
944 1000
54 946
1000 10
56 944
1000 54
946 1000
11 65
935 1000
61 939
1000 12
56 944
1000 50
950 1000
13 61
939 1000
56 944
1000 14
58 942
1000 52
948 1000
15 60
940 1000
57 943
1000 Data
Awal 59
941 1000
53 947
1000
Tabel 26 Rerata panjang interval kepercayaan
Kategori Rerata
Batas Bawah Rerata
Batas Atas Panjang
Interval
2 -12,813
12,403 25,217
3 -3,301
3,686 6,988
4 -6,428
6,211 12,639
5 -4,016
3,970 7,986
6 -4,568
4,466 9,035
7 -3,898
3,945 7,843
8 -4,071
3,913 7,985
9 -3,965
3,953 7,919
10 -3,896
3,800 7,696
11 -3,867
3,786 7,653
12 -3,749
3,717 7,467
13 -3,872
3,745 7,617
14 -3,613
3,586 7,200
15 -3,727
3,639 7,367
Tabel 27 Kasus 1, Poisson, 1000 set data berukuran 100
Kategori Interval
tanpa Interval
dengan Jumlah
Tolak Terima
Jumlah nol
pop 1 nol
pop 2 2
51 949
1000 51
949 1000
3 43
704 747
43 704
747 146
130 4
49 951
1000 49
951 1000
5 52
948 1000
48 952
1000 6
55 945
1000 54
946 1000
7 54
946 1000
54 946
1000 8
53 947
1000 52
948 1000
9 55
945 1000
55 945
1000 10
45 955
1000 43
957 1000
11 55
945 1000
53 947
1000 12
47 953
1000 45
955 1000
13 45
955 1000
45 955
1000 14
47 953
1000 46
954 1000
15 53
947 1000
52 948
1000 Data
Awal 48
952 1000
47 953
1000
Tabel 28 Rerata panjang interval kepercayaan
Kategori Rerata
Batas Bawah Rerata
Batas Atas Panjang
Interval 2
-6,902 6,920
13,823 3
-1,370 1,353
2,723 4
-3,4660 3,463
6,924 5
-2,149 2,246
4,396 6
-2,473 2,482
4,955 7
-2,145 2,149
4,294 8
-2,188 2,216
4,404 9
-2,162 2,162
4,324 10
-2,088 2,136
4,224 11
-2,104 2,108
4,213 12
-2,030 2,058
4,088 13
-2,072 2,106
4,178 14
-1,976 1,979
3,955 15
-1,997 2,046
4,043
Tabel 29 Kasus 1, Poisson, 1000 set data berukuran 200
Kategori Interval
tanpa Interval
dengan Jumlah
Tolak Terima
Jumlah nol
pop 1 nol
pop 2
2 56
944 1000
56 944
1000 3
52 914
966 52
914 966
13 22
4 55
945 1000
55 945
1000 5
59 941
1000 59
941 1000
6 56
944 1000
55 945
1000 7
49 951
1000 49
951 1000
8 50
950 1000
50 950
1000 9
54 946
1000 54
946 1000
10 56
944 1000
55 945
1000 11
44 956
1000 43
957 1000
12 49
951 1000
49 951
1000 13
47 953
1000 46
954 1000
14 49
951 1000
47 9533
1000 15
49 951
1000 49
951 1000
Data Awal
47 953
1000 47
953 1000
Tabel 30 Rerata panjang interval kepercayaan
Kategori Rerata
Batas Bawah Rerata
Batas Atas Panjang
Interval 2
-4,866 4,905
9,771 3
-0,925 0,910
1,836 4
-2,436 2,457
4,893 5
-1,538 1,582
3,121 6
-1,751 1,759
3,510 7
-1,496 1,550
3,047 8
-1,542 1,573
3,115 9
-1,531 1,540
3,072 10
-1,484 1,511
2,996 11
-1,481 1,504
2,986 12
-1,444 1,458
2,902 13
-1,462 1,497
2,960 14
-1,385 1,421
2,806 15
-1,411 1,455
2,867
Tabel 31 Kasus 1, Poisson, 1000 set data berukuran 300
Kategori Interval
tanpa Interval
dengan Jumlah
Tolak Terima
Jumlah nol
pop 1 nol
pop 2 2
57 943
1000 56
944 1000
3 61
934 995
61 934
995 1
4 4
56 944
1000 55
945 1000
5 50
950 1000
49 951
1000 6
46 954
1000 46
954 1000
7 55
945 1000
55 945
1000 8
56 944
1000 53
944 1000
9 53
947 1000
56 947
1000 10
55 945
1000 53
947 1000
11 49
951 1000
49 951
1000 12
52 948
1000 52
948 1000
13 62
938 1000
61 939
1000 14
52 948
1000 52
948 1000
15 54
946 1000
54 946
1000 Data
Awal 61
939 1000
59 941
1000
Tabel 32 Rerata panjang interval kepercayaan
Kategori Rerata
Batas Bawah Rerata
Batas Atas Panjang
Interval 2
-3,897 4,081
7,978
3 -0,721
0,747 1,468
4 -1,953
2,043 3,997
5 -1,244
1,299 2,543
6 -1,392
1,467 2,860
7 -1,230
1,257 2,488
8 -1,242
1,296 2,539
9 -1,226
1,276 2,502
10 -1,192
1,249 2,442
11 -1,195
1,237 2,432
12 -1,160
1,204 2,365
13 -1,181
1,232 2,413
14 -1,122
1,165 2,287
15 -1,137
1,198 2,336
Tabel 33 Kasus 1, Poisson, 1000 set data berukuran 400
Kategori Interval
tanpa Interval
dengan Jumlah
Tolak Terima
Jumlah nol
pop 1 nol
pop 2 2
47 953
1000 47
953 1000
3 51
946 997
51 946
997 2
1 4
48 952
1000 48
952 1000
5 42
958 1000
42 958
1000 6
43 957
1000 43
957 1000
7 55
945 1000
55 945
1000 8
40 960
1000 39
961 1000
9 43
957 1000
43 957
1000 10
46 954
1000 45
955 1000
11 45
955 1000
45 955
1000 12
43 957
1000 43
957 1000
13 41
959 1000
41 959
1000 14
48 952
1000 47
953 1000
15 45
955 1000
44 956
1000 Data
Awal 43
957 1000
42 958
1000
Tabel 34 Rerata panjang interval kepercayaan
Kategori Rerata
Batas Bawah Rerata
Batas Atas Panjang
Interval 2
-3,483 3,426
6,910 3
-0,652 0,630
1,283 4
-1,744 1,717
3,461 5
-1,127 1,078
2,205 6
-1,254 1,225
2,480 7
-1,083 1,071
2,154 8
-1,113 1,088
2,202 9
-1,104 1,064
2,168 10
-1,078 1,038
2,116 11
-1,070 1,037
2,107 12
-1,035 1,015
2,050 13
-1,069 1,021
2,091 14
-1,002 0,979
1,981 15
-1,037 0,988
2,025
Tabel 35 Kasus 1, Poisson, 1000 set data berukuran 500
Kategori Interval
tanpa Interval
dengan Jumlah
Tolak Terima
Jumlah nol
pop 1 nol
pop 2
2 53
947 1000
53 947
1000 3
56 944
1000 56
944 1000
4 49
951 1000
48 952
1000 5
41 959
1000 41
959 1000
6 46
954 1000
46 954
1000 7
43 957
1000 43
957 1000
8 45
955 1000
45 955
1000 9
38 962
1000 38
962 1000
10 37
963 1000
37 963
1000 11
43 957
1000 42
958 1000
12 35
965 1000
35 965
1000 13
43 957
1000 42
958 1000
14 43
957 1000
42 958
1000 15
42 958
1000 41
959 1000
Data Awal
41 959
1000 41
959 1000
Tabel 36 Rerata panjang interval kepercayaan
Kategori Rerata
Batas Bawah Rerata
Batas Atas Panjang
Interval 2
-3,128 3,052
6,180 3
-0,567 0,579
1,146 4
-1,566 1,529
3,096 5
-0,991 0,980
1,971 6
-1,118 1,099
2,217 7
-0,958 0,967
1,925 8
-1,000 0,968
1,969 9
-0,967 0,972
1,940 10
-0,954 0,937
1,891 11
-0,950 0,934
1,884 12
-0,919 0,913
1,833 13
-0,941 0,929
1,870 14
-0,888 0,882
1,771 15
-0,907 0,903
1,811
iii
ABSTRACT
WAHYU HARTONO . Sensitivity of Data Scale on Mean Value Test. Under
supervision of BUDI SUHARJO and HADI SUMARNO.
In many surveys, researchers have often to deal with qualitative or categorical measurements. Sometimes, even continuous objects or characteristics
have to be measured by using a discrete scale. It may be caused by the inability of researchers to perform measurements or scoring of an object precisely using
continuous scale. This will reduce the degree of accuracy of the actual conditions of the measurement results. Therefore, it can imply bias in the results of statistical
tests performed. This research is intended to measure the bias of T-test on categorical data based on various sample sizes and data distributions. Moreover,
this research aims to determine the optimal combination between the number of categories and the number of sample size to produce a certain bias. This study
focuses on the statistical test to compare the characteristics between two groups or populations. The bias is measured as a margin of error of the confidence interval.
Preliminary data are generated by a computer program and then they are split into two to fifteen categories on the same interval. The results of the study are as
follows. For normally and Poisson distributed data, increasing number of categories or sample size will imply decreasing average margin of error. An
explicit bias function according to sample size and category has been proposed. Categorization of data can increase the bias in the confidence interval, but
fortunately the bias does n’t change the conclusion of the -test.
Keywords : categorical data, confidence interval, measurement,
-test
iv
RINGKASAN WAHYU HARTONO.
Sensitivitas Skala Data terhadap Pengujian Nilai
Tengah. Dibimbing oleh
BUDI SUHARJO dan HADI SUMARNO.
Dalam banyak survei atau penelitian sosial, seringkali peneliti dihadapkan pada pengukuran yang bersifat kualitatif atau kategori, terkadang karakteristik
objek yang bersifat kontinu diukur dengan menggunakan skala diskret. Hal tersebut disebabkan oleh ketidakmampuan peneliti dalam melakukan pengukuran
atau scoring terhadap suatu objek secara tepat. Ketidakmampuan tersebut akan menurunkan derajat ketepatan terhadap kondisi yang sesungguhnya dari hasil
pengukuran, sehingga diduga menyebabkan bias pada hasil uji statistik yang dilakukan. Penelitian ini dilakukan untuk mengukur bias uji-
yang berbasis data kategori pada berbagai ukuran contoh dan sebaran data, serta menentukan
kombinasi optimal antara banyaknya kategori dan banyaknya contoh dalam menghasilkan bias tertentu. Penelitian difokuskan pada uji statistik untuk
membandingkan karakteristik antara dua kelompok atau populasi. Biasnya merupakan nilai margin of error dari konsep interval kepercayaan. Selanjutnya
akan ditunjukkan hubungan antara konsep interval kepercayaan dengan uji agar
bias yang diperoleh dari konsep interval kepercayaan dapat diklaim berlaku untuk uji
pada nilai taraf nyata yang sama. Data awal dibangkitkan dengan program komputer dan data hasil
kategorisasi dibuat berdasarkan data awal. Data awal adalah data yang sebenarnya, atau jawaban sebenarnya dari pertanyaan yang diajukan kepada
responden, data awal dapat bersifat kontinu atau diskret. Sedangkan data hasil kategorisasi adalah data yang diperoleh dari jawaban responden yang berupa
perkiraan bahwa jawaban tersebut berada pada suatu interval atau kategori, dengan kata lain, data hasil kategorisasi bersifat diskret.
Uji- terhadap dua kelompok data yang menyebar normal dan Poisson
dilakukan dengan menyusun hipotesis nol dan hipotesis alternatif
sebagai berikut:
v dengan
adalah rerata masing-masing populasi dan taraf nyata .
Konsep confidence level tingkat kepercayaan diterapkan pada interval kepercayaan sehingga akan diperoleh sekitar
atau interval mengandung
dan sebanyak atau interval tidak mengandung
dari sampel-sampel acak yang dibangkitkan secara berulang-ulang sebanyak 1000 kali. Interval kepercayaan untuk membandingkan nilai tengah dua
populasi dinyatakan sebagai berikut: ̅
̅ √
̅ ̅
√ dengan
̅ adalah penduga estimator bagi ̅, adalah nilai
tabel untuk uji- , adalah ragam gabungan, dan
adalah ukuran sampel. Hubungan antara interval kepercayaan dengan uji hipotesis akan ditunjukkan terkait nilai
, sehingga bias dari interval kepercayaan juga dapat digunakan untuk uji-
. Untuk setiap kategori, semakin besar ukuran contoh maka biasnya
semakin kecil. Demikian juga sebaliknya, untuk setiap ukuran contoh, semakin banyak kategori maka biasnya semakin kecil. Fungsi dua variabel dari ukuran
contoh dan banyaknya kategori telah diajukan untuk menghitung nilai margin of error. Pengkategorian data dapat memperbesar bias pada selang kepercayaan,
tetapi untungnya bias tersebut tidak sampai mengubah kesimpulan dari uji- .
Kata kunci: data kategori, interval kepercayaan, pengukuran, uji-