Applications. vol8_pp115-127. 140KB Jun 04 2011 12:06:16 AM

How to Establish Universal Block-Matrix Factorizations 119 Then it is easy to verify that Q 4 m − 1 = Q 4 m and Q 4 n − 1 = Q 4 n . Thus 3.7 is exactly 3.5. ✷ We now let λ = µ = 1 in 3.5 and permute the second and third block rows and block columns of diag N 1 , N 2 , N 3 , N 4 in 3.5. Then we immediately obtain the following corollary. C OROLLARY 3.3. Let A , ..., A 3 ∈ F m ×n be given. Then they satisfy the universal factorization equality     A A 1 A 2 A 3 A 1 A A 3 A 2 A 2 A 3 A A 1 A 3 A 2 A 1 A     = Q 4 m     N 1 N 2 N 3 N 4     Q 4 n , 3.8 where N 1 = A + A 1 + A 2 + A 3 , N 2 = A + A 1 − A 2 − A 3 , N 3 = A − A 1 + A 2 − A 3 , N 4 = A − A 1 − A 2 + A 3 , Q 4 t = Q 4 t T = Q 4 t − 1 = 1 2     I t I t I t I t I t I t −I t −I t I t −I t I t −I t I t −I t −I t I t     , t = m, n. 3.9 In particular , when m = n, 3.8 becomes a universal similarity factorization equality over F . The equalities 3.5 and 3.8 can be used to establish various universal factor- ization equalities over quaternion algebras. We present the corresponding results in the next section.

4. Applications.

We now present one of the most valuable applications of uni- versal block-matrix factorizations, one which substantially reveals the relationship between real quaternion matrices and real block matrices. T HEOREM 4.1. Let A = A + iA 1 + jA 2 + kA 3 ∈ H m ×n , where H is the Hamilton real quaternion algebra , A , ..., A 3 ∈ R m ×n , i 2 = j 2 = k 2 = −1 and ijk = −1. Then A satisfies the universal factorization equality U 4 m     A A A A     U 4 n =     A −A 1 −A 2 −A 3 A 1 A −A 3 A 2 A 2 A 3 A −A 1 A 3 −A 2 A 1 A     := φA, 4.1 where U 4 t = U 4 t ∗ = U 4 t − 1 = 1 2     I t iI t jI t kI t −iI t I t kI t −jI t −jI t −kI t I t iI t −kI t jI t −iI t I t     , t = m, n. 4.2 120 Yongge Tian and George P. H. Styan In particular , if m = n, then 4.1 becomes a universal similarity factorization equality over H . Proof . Observe that Q 4 m and Q 4 n in 3.8 only include identity blocks. Thus the equality 3.8 is also true for matrices over an arbitrary ring with identity. Now replacing A , A 1 , A 2 , A 3 in 3.8 by A , iA 1 , jA 2 , kA 3 , respectively, we obtain the following M :=     A iA 1 jA 2 kA 3 iA 1 A kA 3 jA 2 jA 2 kA 3 A iA 1 kA 3 jA 2 iA 1 A     = Q 4 m     N 1 N 2 N 3 N 4     Q 4 n , 4.3 where Q 4 m and Q 4 n are as in 3.9, and N 1 = A + iA 1 + jA 2 + kA 3 , N 2 = A + iA 1 − jA 2 − kA 3 , N 3 = A − iA 1 + jA 2 − kA 3 , N 4 = A − iA 1 − jA 2 + kA 3 . It is easy to verify that N 2 = iAi − 1 , N 3 = jAj − 1 and N 3 = kAk − 1 . Thus diag N 1 , N 2 , N 3 , N 4 = J 4 m diag A, A, A, A J 4 n − 1 , 4.4 where J 4 t = diag I t , iI t , jI t , kI t , t = m, n. On the other hand, it is easy to verify that J 4 m − 1 2 6 6 4 A iA 1 jA 2 kA 3 iA 1 A kA 3 jA 2 jA 2 kA 3 A iA 1 kA 3 jA 2 iA 1 A 3 7 7 5 J 4 n = 2 6 6 4 A −A 1 −A 2 −A 3 A 1 A −A 3 A 2 A 2 A 3 A −A 1 A 3 −A 2 A 1 A 3 7 7 5 = φA. 4.5 Now putting 4.3 and 4.4 in 4.5, we find φ A = J 4 m − 1 M J 4 n =J 4 m − 1 Q 4 m diag N 1 , N 2 , N 3 , N 4 Q 4 n J 4 n =J 4 m − 1 Q 4 m J 4 m diag A, A, A, A J 4 n − 1 Q 4 n J 4 n . Let U 4 t = J 4 t − 1 Q 4 t J 4 t , t = m, n. Then we have U 4 t = 1 2     I t −iI t −jI t −kI t         I t I t I t I t I t I t −I t −I t I t −I t I t −I t I t −I t −I t I t         I t iI t jI t kI t     = 1 2     I t iI t jI t kI t −iI t I t kI t −jI t −jI t −kI t I t iI t −kI t jI t −iI t I t     , which proves 4.1. ✷ How to Establish Universal Block-Matrix Factorizations 121 The equality 4.1 implies that for any quaternion matrix A, the corresponding block-diagonal matrix diag A, A, A, A is uniformly equivalent to its real repre- sentation φA. In particular, if A is square, then diag A, A, A, A is uniformly and unitarily similar to its real representation φA. Hence 4.1 can be effectively used for developing matrix analysis over the real quaternion algebra H . For example, concerning the determinants of quaternion matrices, a fundamental topic related to quaternion matrices that has been examined for many years see, e.g., [1, 2], if we wish to define the determinant of a quaternion matrix satisfying only two axioms: i DI n = 1; ii DAB = DADB, then we see immediately from 4.1 and 4.2 that 1 = DI n = DU 4 n U 4 n = DU 4 n DU 4 n , and then D[φA] = DU 4 n D[diag A, A, A, A ]DU 4 n = D[diag A, A, A, A ]. This fact implies that if the above two axioms are satisfied, then the determinant of the diagonal block matrix diag A, A, A, A must be equal to the determinant of the real matrix φA. Since the conventional determinant of a real matrix is well defined, the equality 4.1 naturally suggests that we define the determinant of a quaternion matrix through the determinant of its real representation matrix φA, that is, for any square quaternion matrix A, we can define its determinant as RdetA := det[φA], 4.6 where det[φA] is the conventional determinant of the real matrix φA. In that case, it is easy to verify that this definition, up to some trivial power factors, is also identical to the determinants of a quaternion matrix examined in [2]. However, the merit of the definition 4.6 is in that the evaluation of det[φA] can be trivially realized in any case. As an application of 4.1, suppose now two real matrices A and B satisfy A 2 = B 2 = −I n and AB + BA = 0, and let M = aI n + bA + cB + dAB. In that case, we see from 4.1 that M satisfies the matrix factorization P     M M M M     P − 1 =     a −b −c −d b a −d c c d a −b d −c b a     ⊗I n , 4.7 where P = P − 1 = 1 2     I n A B AB −A I n AB −B −B −AB I n A −AB B −A I n     , 122 Yongge Tian and George P. H. Styan and ⊗ stands for the Kronecker product of matrices. This similarity factorization reveals that the properties of M can all be determined by the matrix     a −b −c −d b a −d c c d a −b d −c b a     . We may find the determinant, rank, inverse, eigenvalues and eigenvectors, and so on, for the matrix M from 4.7. Some other applications of 4.1 to quaternion matrices were presented in Tian [12]. From 3.8 we can also derive another universal factorization equality for matrices over the four-dimensional commutative algebra over R generated by i and j with i 2 = j 2 = 1, ij = ji. The element of this algebra has the form a = a + ia 1 + ja 2 + ka 3 , where k = ij. In that case, we have the following theorem. T HEOREM 4.2. Let A = A + iA 1 + jA 2 + kA 3 be a matrix with A , ..., A 3 ∈ R m ×n , i 2 = j 2 = 1 and k = ij = ji. Then A satisfies the universal factorization equality V 4 m     D 1 D 2 D 3 D 4     V 4 n =     A A 1 A 2 A 3 A 1 A A 3 A 2 A 2 A 3 A A 1 A 3 A 2 A 1 A     := ψA, 4.8 where D 1 = A + iA 1 + jA 2 + kA 3 , D 2 = A + iA 1 − jA 2 − kA 3 , D 3 = A − iA 1 + jA 2 − kA 3 , D 4 = A − iA 1 − jA 2 + kA 3 , and V 4 4 = V 4 4 − 1 = 1 2     I t iI t jI t kI t iI t I t −kI t −jI t jI t −kI t I t −iI t kI t −jI t −iI t I t     , t = m, n. In particular , if m = n, then 4.8 becomes a universal similarity factorization equal- ity. Proof . Replacing A , A 1 , A 2 , A 3 in 3.8 by A , iA 1 , jA 2 , kA 3 , respectively, we obtain M :=     A iA 1 jA 2 kA 3 iA 1 A kA 3 jA 2 jA 2 kA 3 A iA 1 kA 3 jA 2 iA 1 A     = Q 4 m     D 1 D 2 D 3 D 4     Q 4 n , 4.9 How to Establish Universal Block-Matrix Factorizations 123 where Q 4 m and Q 4 n are as in 3.9. It is easy to verify that D 1 = iD 1 i − 1 , D 2 = iD 2 i − 1 , D 3 = iD 3 i − 1 , and D 4 = iD 4 i − 1 . Thus diag D 1 , D 2 , D 3 , D 4 = J 4 4 diag D 1 , D 2 , D 3 , D 4 J 4 n , 4.10 where J 4 t = J 4 t − 1 = diag I t , iI t , jI t , kI t , t = m, n. On the other hand, it is easy to verify that J 4 m     A iA 1 jA 2 kA 3 iA 1 A kA 3 jA 2 jA 2 kA 3 A iA 1 kA 3 jA 2 iA 1 A     J 4 n =     A A 1 A 2 A 3 A 1 A A 3 A 2 A 2 A 3 A A 1 A 3 A 2 A 1 A     . 4.11 Now putting 4.9 and 4.10 in 4.11, we find ψ A = J 4 m M J 4 n = J 4 m Q 4 m diag D 1 , D 2 , D 3 , D 4 Q 4 n J 4 n = J 4 m Q 4 m J 4 m diag D 1 , D 2 , D 3 , D 4 J 4 n Q 4 n J 4 n . Let V 4 t = J 4 t Q t J 4 t , t = m, n. Then we have V 4 t = 1 2     I t iI t jI t kI t         I t I t I t I t I t I t −I t −I t I t −I t I t −I t I t −I t −I t I t         I t iI t jI t kI t     = 1 2     I t iI t jI t kI t iI t I t −kI t −jI t jI t −kI t I t −iI t kI t −jI t −iI t I t     , which proves 4.8. ✷ Substituting 3.8 into the right-hand side of 4.8, we also get L 4m     D 1 D 2 D 3 D 4     L 4n =     N 1 N 2 N 3 N 4     , 4.12 where L 4t = L − 1 4t =     l 1 I t l 2 I t l 3 I t l 4 I t l 2 I t l 1 I t −l 4 I t −l 3 I t l 3 I t −l 4 I t l 1 I t −l 2 I t l 4 I t −l 3 I t −l 2 I t l 1 I t     with l 1 = 1 4 1 + i + j + k, l 2 = 1 4 1 + i − j − k, l 3 = 1 4 1 − i + j − k, l 4 = 1 4 1 − i − j + k. 124 Yongge Tian and George P. H. Styan In particular, when m = n, 4.12 becomes a universal similarity factorization equality over F . From 4.12, we can establish a useful factorization equality for a linear com- bination of involutory matrices. Suppose that A and B are two involutory ma- trices, i.e., A 2 = B 2 = I n , and suppose further that AB = BA. Then for any M = aI n + bA + cB + dAB, where a, b, c, d are scalars, the following factorization equality holds L     M 1 M 2 M 3 M 4     L − 1 =     m 1 I n m 2 I n m 3 I n m 4 I n     , 4.13 where M 1 = aI n + bA + cB + dAB, M 2 = aI n + bA − cB − dAB, M 3 = aI n − bA + cB − dAB, M 4 = aI n − bA − cB + dAB, m 1 = a + b + c + d, m 2 = a + b − c − d, m 3 = a − b + c − d, m 4 = a − b − c + d, and L = L − 1 =     L 1 L 2 L 3 L 4 L 2 L 1 −L 4 −L 3 L 3 −L 4 L 1 −L 2 L 4 −L 3 −L 2 L 1     with L 1 = 1 4 I n + A + B + AB, L 2 = 1 4 I n + A − B − AB, 4.14 L 3 = 1 4 I n − A + B − AB, L 4 = 1 4 I n − A − B + AB. 4.15 Many properties of M 1 , ..., M 4 can be derived from 4.13. For example, M 1 , ..., M 4 are all nonsingular if and only if m 1 , ..., m 4 are nonzero. All M 1 , ..., M 4 are diagonalizable, and m 1 , ..., m 4 are eigenvalues of M 1 , ..., M 4 . Moreover, it is easy to find from 4.13 that M can be written as M 1 = m 1 L 1 + m 2 L 2 + m 3 L 3 + m 4 L 4 , where L 1 , ..., L 4 are defined in 4.14 and 4.15 and they satisfy L 2 i = L i and L i L j = 0 for i = j, i, j = 1, ..., 4. Thus it follows that M k 1 = m k 1 L 1 + m k 2 L 2 + m k 3 L 3 + m k 4 L 4 for any positive integer k. We may also apply 4.13 to idempotent matrices. For any two idempotent ma- trices A and B with AB = BA it follows that I − 2A 2 = I − 2B 2 = I, and How to Establish Universal Block-Matrix Factorizations 125 I − 2AI − 2B = I − 2BI − 2A. From 4.13 we obtain the following valuable factorization equality for idempotent matrices. T HEOREM 4.3. Suppose A 2 = A, B 2 = B and AB = BA. Then L     M 1 M 2 M 3 M 4     L − 1 =     m 1 I n m 2 I n m 3 I n m 4 I n     , 4.16 where M 1 = a I n + a 1 A + a 2 B + a 3 AB, M 2 = a + a 2 I n + a 1 + a 3 A − a 2 B − a 3 AB, M 3 = a + a 1 I n − a 1 A + a 2 + a 3 B − a 3 AB, M 4 = a + a 1 + a 2 + a 3 I n − a 1 + a 3 A − a 2 + a 3 B + a 3 AB, m 1 = a , m 2 = a + a 2 , m 3 = a + a 1 , m 4 = a + a 1 + a 2 + a 3 , and L = L − 1 =     L 1 L 2 L 3 L 4 L 2 L 1 −L 4 −L 3 L 3 −L 4 L 1 −L 2 L 4 −L 3 −L 2 L 1     with L 1 = I n − A − B + AB, L 2 = B − AB, L 3 = A − AB, L 4 = AB. These four matrices satisfy L 2 i = L i and L i L j = 0 for i = j; i, j = 1, . . . , 4. From 4.16 we see that the matrix M 1 in 4.16 can be written as M 1 = m 1 L 1 + m 2 L 2 + m 3 L 3 + m 4 L 4 , with M k 1 = m k 1 L 1 + m k 2 L 2 + m k 3 L 3 + m k 4 L 4 , for any positive integer k. From these results we may investigate various properties of the matrix M 1 , such as idempotency, r-potency, involution, and so on. The universal factorization equality 4.1 can also be extended to a generalized quaternion algebra u, v F for more details on generalized quaternion algebras, see, e.g., [7, 8, 9]. Here we only present the main result without proof. T HEOREM 4.4. Let A = A + iA 1 + jA 2 + kA 3 ∈ u, v F m ×n , where F is an arbitrary field of characteristic not equal to two , u, v ∈ F , and A , . . . , A 3 ∈ F m ×n , i 2 = u = 0, j 2 = v = 0, k = ij = −ji. 126 Yongge Tian and George P. H. Styan Then A satisfies the universal factorization equality V 4 m     A A A A     V 4 n =     A uA 1 vA 2 −uvA 3 A 1 A vA 3 −vA 2 A 2 −uA 3 A uA 1 A 3 −A 2 A 1 A     , 4.17 where V 4 t = V 4 t − 1 = 1 2     I t iI t jI t kI t u − 1 iI t I t −u − 1 kI t −jI t v − 1 jI t v − 1 kI t I t iI t −uv − 1 kI t −v − 1 jI t u − 1 iI t I t     , t = m, n. In particular , when m = n, thef actorization 4.17 becomes a universal similarity factorization equality over u, v F . Finally we point out that the two fundamental equalities in 4.1 and 4.17 can also be extended to all 2 n -dimensional Clifford algebras real, complex, generalized. The corresponding results can serve as a powerful tool for examining these kinds of algebras; see [10, 11]. For more details on Clifford algebras see, e.g., [5, 9].

5. Conclusions.

Dokumen yang terkait

AN ALIS IS YU RID IS PUT USAN BE B AS DAL AM P E RKAR A TIND AK P IDA NA P E NY E RTA AN M E L AK U K A N P R AK T IK K E DO K T E RA N YA NG M E N G A K IB ATK AN M ATINYA P AS IE N ( PUT USA N N O MOR: 9 0/PID.B /2011/ PN.MD O)

0 82 16

ANALISIS FAKTOR YANGMEMPENGARUHI FERTILITAS PASANGAN USIA SUBUR DI DESA SEMBORO KECAMATAN SEMBORO KABUPATEN JEMBER TAHUN 2011

2 53 20

EFEKTIVITAS PENDIDIKAN KESEHATAN TENTANG PERTOLONGAN PERTAMA PADA KECELAKAAN (P3K) TERHADAP SIKAP MASYARAKAT DALAM PENANGANAN KORBAN KECELAKAAN LALU LINTAS (Studi Di Wilayah RT 05 RW 04 Kelurahan Sukun Kota Malang)

45 393 31

FAKTOR – FAKTOR YANG MEMPENGARUHI PENYERAPAN TENAGA KERJA INDUSTRI PENGOLAHAN BESAR DAN MENENGAH PADA TINGKAT KABUPATEN / KOTA DI JAWA TIMUR TAHUN 2006 - 2011

1 35 26

A DISCOURSE ANALYSIS ON “SPA: REGAIN BALANCE OF YOUR INNER AND OUTER BEAUTY” IN THE JAKARTA POST ON 4 MARCH 2011

9 161 13

Pengaruh kualitas aktiva produktif dan non performing financing terhadap return on asset perbankan syariah (Studi Pada 3 Bank Umum Syariah Tahun 2011 – 2014)

6 101 0

Pengaruh pemahaman fiqh muamalat mahasiswa terhadap keputusan membeli produk fashion palsu (study pada mahasiswa angkatan 2011 & 2012 prodi muamalat fakultas syariah dan hukum UIN Syarif Hidayatullah Jakarta)

0 22 0

Pendidikan Agama Islam Untuk Kelas 3 SD Kelas 3 Suyanto Suyoto 2011

4 108 178

ANALISIS NOTA KESEPAHAMAN ANTARA BANK INDONESIA, POLRI, DAN KEJAKSAAN REPUBLIK INDONESIA TAHUN 2011 SEBAGAI MEKANISME PERCEPATAN PENANGANAN TINDAK PIDANA PERBANKAN KHUSUSNYA BANK INDONESIA SEBAGAI PIHAK PELAPOR

1 17 40

KOORDINASI OTORITAS JASA KEUANGAN (OJK) DENGAN LEMBAGA PENJAMIN SIMPANAN (LPS) DAN BANK INDONESIA (BI) DALAM UPAYA PENANGANAN BANK BERMASALAH BERDASARKAN UNDANG-UNDANG RI NOMOR 21 TAHUN 2011 TENTANG OTORITAS JASA KEUANGAN

3 32 52