The 2 × 2 and 4 × 4 block cases. The factorization equalities in Theorem 2.1

116 Yongge Tian and George P. H. Styan

2. The 2 × 2 case. We begin with a simple but essential problem on similarity of a

matrix. Suppose P = p 1 p 2 p 3 p 4 is a given nonsingular matrix over an arbitrary field F , i.e., |P | = p 1 p 4 −p 2 p 3 = 0. Then find the general expression of X such that P XP − 1 is a diagonal matrix. The answer is trivially obvious: X = P − 1 λ 1 λ 2 P , where λ 1 , λ 2 ∈ F are arbitrary, that is, X = P − 1 λ 1 λ 2 P = 1 |P | p 4 −p 2 −p 3 p 1 λ 1 λ 2 p 1 p 2 p 3 p 4 . 2.1 The motivation for us to consider 2.1 is that if we replace λ 1 and λ 2 by some particular expressions, or if P in 2.1 has some special form, then X in 2.1 will have some nice expressions. All of our subsequent results are in fact derived from this consideration. From 2.1, we can derive the following theorem. T HEOREM 2.1. Let p 1 , . . . , p 4 ∈ F with p 1 p 4 = p 2 p 3 be given. Then for any a, b ∈ F , the following two equalities hold a −p 2 p 4 b p 1 p 3 b a + p 1 p 4 + p 2 p 3 b = p 1 p 2 p 3 p 4 − 1 a + p 2 p 3 b a + p 1 p 4 b p 1 p 2 p 3 p 4 , 2.2 a − p 2 p 3 b −p 2 p 4 b p 1 p 3 b a + p 1 p 4 b = p 1 p 2 p 3 p 4 − 1 a a − p 2 p 3 − p 1 p 4 b p 1 p 2 p 3 p 4 . 2.3 In particular , if p 1 p 4 = −p 2 p 3 = 0, then a −p 2 p 4 b p 1 p 3 b a = p 1 p 2 p 3 p 4 − 1 a + p 2 p 3 b a − p 2 p 3 b p 1 p 2 p 3 p 4 . 2.4 If p = 0, then a p 2 b b a = 1 p p − 1 −1 − 1 a + pb a − pb 1 p p − 1 −1 . 2.5 If p, q ∈ C , the field of complex numbers, with pq = 0, then a pb qb a =   1 p q q p −1   − 1 a + √pq b a − √ pq b   1 p q q p −1   . 2.6 Proof . Substituting λ 1 = a + p 2 p 3 b and λ 2 = a + p 1 p 4 b in 2.1 yields 2.2 and then substituting λ 1 = a and λ 2 = a − p 2 p 3 − p 1 p 4 b in 2.1 yields 2.3. The factorizations 2.4–2.6 are direct consequences of 2.2. ✷

3. The 2 × 2 and 4 × 4 block cases. The factorization equalities in Theorem 2.1

can be easily extended to the 2 × 2 block case. In fact, replacing a and b in 2.2 with two m × n matrices A and B, p i with p i I m and p i I n i = 1, 2, 3, 4, respectively, we immediately have the following theorem. How to Establish Universal Block-Matrix Factorizations 117 T HEOREM 3.1. Let p 1 , . . . , p 4 ∈ F be given with p 1 p 4 = p 2 p 3 , and A, B ∈ F m ×n . Then A −p 2 p 4 B p 1 p 3 B A + p 1 p 4 + p 2 p 3 B 3.1 = p 1 I m p 2 I m p 3 I m p 4 I m − 1 A + p 2 p 3 B A + p 1 p 4 B p 1 I n p 2 I n p 3 I n p 4 I n . If p 1 p 4 = −p 2 p 3 = 0, then A −p 2 p 4 B p 1 p 3 B A 3.2 = p 1 I m p 2 I m p 3 I m p 4 I m − 1 A + p 2 p 3 B A − p 2 p 3 B p 1 I n p 2 I n p 3 I n p 4 I n . If p = 0, then A p 2 B B A = I m pI m p − 1 I m −I m − 1 A + pB A − pB I n pI n p − 1 I n −I n . 3.3 If p, q ∈ C with pq = 0, then A pB qB A 3.4 =   I m p q I m q p I m −I m   − 1 A + √pq B A − √ pq B   I n p q I n q p I n −I n   . Clearly, the two equalities in 1.1 and 1.2 are special cases of 3.3 when p = 1 and p 2 = −1, respectively. Without much effort, we can extend the universal block matrix factorizations in 3.1–3.4 to 4 × 4block matrices. For simplicity, we only give the extension of 3.3 and its consequences. T HEOREM 3.2. Let A , . . . , A 3 ∈ F m ×n be given, and λ, µ ∈ F with λµ = 0. Then they satisfy the universal factorization equality A :=     A λ 2 A 1 µ 2 A 2 µ 2 λ 2 A 3 A 1 A µ 2 A 3 µ 2 A 2 A 2 λ 2 A 3 A λ 2 A 1 A 3 A 2 A 1 A     = Q 4 m     N 1 N 2 N 3 N 4     Q 4 n , 3.5 where N 1 = A + λA 1 + µA 2 + µλA 3 , N 2 = A − λA 1 + µA 2 − µλA 3 , N 3 = A + λA 1 − µA 2 − µλA 3 , N 4 = A − λA 1 − µA 2 + µλA 3 , Q 4 t = Q 4 t − 1 = 1 2     I t λI t µI t λµI t λ − 1 I t −I t λ − 1 µI t −µI t µ − 1 I t λµ − 1 I t −I t −λI t λµ − 1 I t −µ − 1 I t −λ − 1 I t I t     , t = m, n. 118 Yongge Tian and George P. H. Styan In particular , when m = n, 3.5 becomes a universal similarity factorization equality over F . Proof . Let E = A λ 2 A 1 A 1 A , F = A 2 λ 2 A 3 A 3 A 2 . Then by 3.3, we first obtain E µ 2 F F E = S 4 m E + µF E − µF S 4 n , 3.6 where S 4 t = S 4 t − 1 = 1 √ 2 I 2t µI 2t µ − 1 I 2t −I 2t , t = m, n, and E + µF = A + µA 2 λ 2 A 1 + µA 3 A 1 + µA 3 A + µA 2 , E − µF = A − µA 2 λ 2 A 1 − µA 3 A 1 − µA 3 A − µA 2 . Applying 3.3 to E ± µF , we further have E + µF = P 2 m A + λA 1 + µA 2 + µλA 3 A − λA 1 + µA 2 − µλA 3 P 2 n = P 2 m N 1 N 2 P 2 n , E − µF = P 2 m A + λA 1 − µA 2 − µλA 3 A − λA 1 − µA 2 + µλA 3 P 2 n = P 2 m N 3 N 4 P 2 n , where P 2 t = P 2 t − 1 = 1 √ 2 I t λI t λ − 1 I t −I t , t = m, n. Thus 3.6 becomes E µ 2 F F E = S 4 m P 2 m P 2 m     N 1 N 2 N 3 N 4     P 2 n P 2 n S 4 n . 3.7 Now let Q 4 m = S 4 m P 2 m P 2 m and Q 4 n = P 2 n P 2 n S 4 n . How to Establish Universal Block-Matrix Factorizations 119 Then it is easy to verify that Q 4 m − 1 = Q 4 m and Q 4 n − 1 = Q 4 n . Thus 3.7 is exactly 3.5. ✷ We now let λ = µ = 1 in 3.5 and permute the second and third block rows and block columns of diag N 1 , N 2 , N 3 , N 4 in 3.5. Then we immediately obtain the following corollary. C OROLLARY 3.3. Let A , ..., A 3 ∈ F m ×n be given. Then they satisfy the universal factorization equality     A A 1 A 2 A 3 A 1 A A 3 A 2 A 2 A 3 A A 1 A 3 A 2 A 1 A     = Q 4 m     N 1 N 2 N 3 N 4     Q 4 n , 3.8 where N 1 = A + A 1 + A 2 + A 3 , N 2 = A + A 1 − A 2 − A 3 , N 3 = A − A 1 + A 2 − A 3 , N 4 = A − A 1 − A 2 + A 3 , Q 4 t = Q 4 t T = Q 4 t − 1 = 1 2     I t I t I t I t I t I t −I t −I t I t −I t I t −I t I t −I t −I t I t     , t = m, n. 3.9 In particular , when m = n, 3.8 becomes a universal similarity factorization equality over F . The equalities 3.5 and 3.8 can be used to establish various universal factor- ization equalities over quaternion algebras. We present the corresponding results in the next section.

4. Applications.

Dokumen yang terkait

AN ALIS IS YU RID IS PUT USAN BE B AS DAL AM P E RKAR A TIND AK P IDA NA P E NY E RTA AN M E L AK U K A N P R AK T IK K E DO K T E RA N YA NG M E N G A K IB ATK AN M ATINYA P AS IE N ( PUT USA N N O MOR: 9 0/PID.B /2011/ PN.MD O)

0 82 16

ANALISIS FAKTOR YANGMEMPENGARUHI FERTILITAS PASANGAN USIA SUBUR DI DESA SEMBORO KECAMATAN SEMBORO KABUPATEN JEMBER TAHUN 2011

2 53 20

EFEKTIVITAS PENDIDIKAN KESEHATAN TENTANG PERTOLONGAN PERTAMA PADA KECELAKAAN (P3K) TERHADAP SIKAP MASYARAKAT DALAM PENANGANAN KORBAN KECELAKAAN LALU LINTAS (Studi Di Wilayah RT 05 RW 04 Kelurahan Sukun Kota Malang)

45 393 31

FAKTOR – FAKTOR YANG MEMPENGARUHI PENYERAPAN TENAGA KERJA INDUSTRI PENGOLAHAN BESAR DAN MENENGAH PADA TINGKAT KABUPATEN / KOTA DI JAWA TIMUR TAHUN 2006 - 2011

1 35 26

A DISCOURSE ANALYSIS ON “SPA: REGAIN BALANCE OF YOUR INNER AND OUTER BEAUTY” IN THE JAKARTA POST ON 4 MARCH 2011

9 161 13

Pengaruh kualitas aktiva produktif dan non performing financing terhadap return on asset perbankan syariah (Studi Pada 3 Bank Umum Syariah Tahun 2011 – 2014)

6 101 0

Pengaruh pemahaman fiqh muamalat mahasiswa terhadap keputusan membeli produk fashion palsu (study pada mahasiswa angkatan 2011 & 2012 prodi muamalat fakultas syariah dan hukum UIN Syarif Hidayatullah Jakarta)

0 22 0

Pendidikan Agama Islam Untuk Kelas 3 SD Kelas 3 Suyanto Suyoto 2011

4 108 178

ANALISIS NOTA KESEPAHAMAN ANTARA BANK INDONESIA, POLRI, DAN KEJAKSAAN REPUBLIK INDONESIA TAHUN 2011 SEBAGAI MEKANISME PERCEPATAN PENANGANAN TINDAK PIDANA PERBANKAN KHUSUSNYA BANK INDONESIA SEBAGAI PIHAK PELAPOR

1 17 40

KOORDINASI OTORITAS JASA KEUANGAN (OJK) DENGAN LEMBAGA PENJAMIN SIMPANAN (LPS) DAN BANK INDONESIA (BI) DALAM UPAYA PENANGANAN BANK BERMASALAH BERDASARKAN UNDANG-UNDANG RI NOMOR 21 TAHUN 2011 TENTANG OTORITAS JASA KEUANGAN

3 32 52