Introduction. The 2 × 2 case. We begin with a simple but essential problem on similarity of a

Volume 8, pp. 115-127, August 2001. ISSN 1081-3810. http:math.technion.ac.iliicela HOW TO ESTABLISH UNIVERSAL BLOCK-MATRIX FACTORIZATIONS ∗ YONGGE TIAN † AND GEORGE P. H. STYAN ‡ Abstract. A general method is presented for establishing universal factorization equalities for 2×2 and 4×4 block matrices. As applications, some universal factorization equalities for matrices over four-dimensional algebras are established, in particular, over the Hamiltonian quaternion algebra. Key words. Block matrix, Determinant, Quaternion matrices, Universal factorization, Involu- tory matrices, Idempotent matrices. AMS subject classifications. 15A23, 15A33

1. Introduction.

We consider in this article how to establish universal factor- ization equalities for block matrices. This work is motivated by the following two well-known factorizations of 2 × 2 block matrices see, e.g., [4, 6] A B B A = Q 2 m A + B A − B Q 2 n , Q 2 t = 1 √ 2 I t I t I t −I t , t = m, n, 1.1 A −B B A = P 2 m A + iB A − iB P 2 n , P 2 t = 1 √ 2 I t iI t −iI t −I t , t = m, n. 1.2 Obviously P 2 t = P 2 t − 1 and Q 2 t = Q 2 t − 1 t = m, n, and they are independent of A and B. Thus 1.1 and 1.2 could be called universal factorization equalities for block matrices. From these two equalities we find many useful consequences, such as rank A B B A = rankA + B + rankA − B, det A −B B A = detA + iB detA − iB, A + iB † = 1 2 [ I n , iI n ] A −B B A † I m −iI m , and so on. Here · † denotes the Moore–Penrose inverse. In this article we shall present a general method for establishing such univer- sal factorizations, and then establish some useful factorization equalities for block matrices. ∗ Received by the editors on 1 May 2000. Accepted for publication on 23 May 2001. Handling Editor: Ludwig Elsner. † Department of Mathematics and Statistics, Queen’s University, Kingston, Ontario, Canada K7L 3N6 ytianmast.queensu.ca. The research of the first author was supported in part by the Natural Sciences and Engi- neering Research Council of Canada. ‡ Department of Mathematics and Statistics, McGill University, 805 ouest rue Sherbrooke, Montr´eal Qu´ebec, Canada H3A 2K6 styantotal.net. The research of the second author was supported in part by the Natural Sciences and Engineering Research Council of Canada and in part by the Academy of Finland. 115 116 Yongge Tian and George P. H. Styan

2. The 2 × 2 case. We begin with a simple but essential problem on similarity of a

matrix. Suppose P = p 1 p 2 p 3 p 4 is a given nonsingular matrix over an arbitrary field F , i.e., |P | = p 1 p 4 −p 2 p 3 = 0. Then find the general expression of X such that P XP − 1 is a diagonal matrix. The answer is trivially obvious: X = P − 1 λ 1 λ 2 P , where λ 1 , λ 2 ∈ F are arbitrary, that is, X = P − 1 λ 1 λ 2 P = 1 |P | p 4 −p 2 −p 3 p 1 λ 1 λ 2 p 1 p 2 p 3 p 4 . 2.1 The motivation for us to consider 2.1 is that if we replace λ 1 and λ 2 by some particular expressions, or if P in 2.1 has some special form, then X in 2.1 will have some nice expressions. All of our subsequent results are in fact derived from this consideration. From 2.1, we can derive the following theorem. T HEOREM 2.1. Let p 1 , . . . , p 4 ∈ F with p 1 p 4 = p 2 p 3 be given. Then for any a, b ∈ F , the following two equalities hold a −p 2 p 4 b p 1 p 3 b a + p 1 p 4 + p 2 p 3 b = p 1 p 2 p 3 p 4 − 1 a + p 2 p 3 b a + p 1 p 4 b p 1 p 2 p 3 p 4 , 2.2 a − p 2 p 3 b −p 2 p 4 b p 1 p 3 b a + p 1 p 4 b = p 1 p 2 p 3 p 4 − 1 a a − p 2 p 3 − p 1 p 4 b p 1 p 2 p 3 p 4 . 2.3 In particular , if p 1 p 4 = −p 2 p 3 = 0, then a −p 2 p 4 b p 1 p 3 b a = p 1 p 2 p 3 p 4 − 1 a + p 2 p 3 b a − p 2 p 3 b p 1 p 2 p 3 p 4 . 2.4 If p = 0, then a p 2 b b a = 1 p p − 1 −1 − 1 a + pb a − pb 1 p p − 1 −1 . 2.5 If p, q ∈ C , the field of complex numbers, with pq = 0, then a pb qb a =   1 p q q p −1   − 1 a + √pq b a − √ pq b   1 p q q p −1   . 2.6 Proof . Substituting λ 1 = a + p 2 p 3 b and λ 2 = a + p 1 p 4 b in 2.1 yields 2.2 and then substituting λ 1 = a and λ 2 = a − p 2 p 3 − p 1 p 4 b in 2.1 yields 2.3. The factorizations 2.4–2.6 are direct consequences of 2.2. ✷

3. The 2 × 2 and 4 × 4 block cases. The factorization equalities in Theorem 2.1

Dokumen yang terkait

AN ALIS IS YU RID IS PUT USAN BE B AS DAL AM P E RKAR A TIND AK P IDA NA P E NY E RTA AN M E L AK U K A N P R AK T IK K E DO K T E RA N YA NG M E N G A K IB ATK AN M ATINYA P AS IE N ( PUT USA N N O MOR: 9 0/PID.B /2011/ PN.MD O)

0 82 16

ANALISIS FAKTOR YANGMEMPENGARUHI FERTILITAS PASANGAN USIA SUBUR DI DESA SEMBORO KECAMATAN SEMBORO KABUPATEN JEMBER TAHUN 2011

2 53 20

EFEKTIVITAS PENDIDIKAN KESEHATAN TENTANG PERTOLONGAN PERTAMA PADA KECELAKAAN (P3K) TERHADAP SIKAP MASYARAKAT DALAM PENANGANAN KORBAN KECELAKAAN LALU LINTAS (Studi Di Wilayah RT 05 RW 04 Kelurahan Sukun Kota Malang)

45 393 31

FAKTOR – FAKTOR YANG MEMPENGARUHI PENYERAPAN TENAGA KERJA INDUSTRI PENGOLAHAN BESAR DAN MENENGAH PADA TINGKAT KABUPATEN / KOTA DI JAWA TIMUR TAHUN 2006 - 2011

1 35 26

A DISCOURSE ANALYSIS ON “SPA: REGAIN BALANCE OF YOUR INNER AND OUTER BEAUTY” IN THE JAKARTA POST ON 4 MARCH 2011

9 161 13

Pengaruh kualitas aktiva produktif dan non performing financing terhadap return on asset perbankan syariah (Studi Pada 3 Bank Umum Syariah Tahun 2011 – 2014)

6 101 0

Pengaruh pemahaman fiqh muamalat mahasiswa terhadap keputusan membeli produk fashion palsu (study pada mahasiswa angkatan 2011 & 2012 prodi muamalat fakultas syariah dan hukum UIN Syarif Hidayatullah Jakarta)

0 22 0

Pendidikan Agama Islam Untuk Kelas 3 SD Kelas 3 Suyanto Suyoto 2011

4 108 178

ANALISIS NOTA KESEPAHAMAN ANTARA BANK INDONESIA, POLRI, DAN KEJAKSAAN REPUBLIK INDONESIA TAHUN 2011 SEBAGAI MEKANISME PERCEPATAN PENANGANAN TINDAK PIDANA PERBANKAN KHUSUSNYA BANK INDONESIA SEBAGAI PIHAK PELAPOR

1 17 40

KOORDINASI OTORITAS JASA KEUANGAN (OJK) DENGAN LEMBAGA PENJAMIN SIMPANAN (LPS) DAN BANK INDONESIA (BI) DALAM UPAYA PENANGANAN BANK BERMASALAH BERDASARKAN UNDANG-UNDANG RI NOMOR 21 TAHUN 2011 TENTANG OTORITAS JASA KEUANGAN

3 32 52