Derivation Of Formula H

that Stirling’s formula for the Gamma function implies V I ≤2π − 1 2q 2 q+ 1 2q Γ q + 1 2 1 q p ˜cT ≤ 2e − 5 12 p 2π˜c p q + 1 p T . 21 Thus 1. follows. For the proof of 2. it is sufficient to observe that since for any t ≥ 0 we have t ≤ e t e and p t ≤ 14 + t we also get β N + β L T + 2e − 5 12 p 2π˜c p q + 1 p T ≤ β N + β L e T e + 2e − 5 12 p 2π˜ce p q+ 1 p T e ≤ β N + β L e T e + 2e − 5 12 p 2π˜ce 14+q+1T e ≤ h β N + β L + 2e 1 4e − 5 12 p 2π˜c i e q+ 1 E T . 22 This proofs 2. and 3. follows from this by using |x− y| r ≤ 1. ƒ Since we can now control the moments of ψ t x − ψ t y provided x and y are not too close to each other we introduce the following stopping time. Let ¯r be chosen according to Lemma 1.3 and ˜r ≤ ¯r to be specified later. Remember that we assumed ¯r ≤ 1. We now define for x, y ∈ R d with |x − y| ≤ r the stopping time τ := inf t {|x t − y t | ≥ ˜r} and assume r ˜r in the following which ensures τ 0 a.s..

4.2 Derivation Of Formula H

We now proceed to work on ∂ j x i s k D x s k − ∂ j y i s k D y s k by proving the following proposition on ∂ j x i s k D x s k . Proposition 4.3 SDE for the direction of the derivative . We have the SDE ∂ j x i s D x s = δ i j p d + Z t X k ∂ k F i ds , x s ∂ j x k s D x s − Z t X k ,l,m ∂ m F k ds , x s ∂ l x m s ∂ l x k s ∂ j x i s D x s 3 + 1 4 − d 2 β N − 1 4 β L Z t ∂ j x i s D x s ds − β N + β L 2 Z t X k ,l ∂ j x k s ∂ l x i s ∂ l x k s D x s 3 ds + 3 4 β N + β L Z t X k ,l,m,n ∂ l x k s ∂ l x n s ∂ m x k s ∂ m x n s ∂ j x i s D x s 5 ds . 23 Proof: Since by Itô’s formula ∂ j x i s D x s = δ i j p d + Z t d ∂ j x i · s D x s − 1 2 Z t ∂ j x i s D x s 3 d D x · 2 s − 1 2 Z t d D ∂ j x i · , D x · 2 E s D x s 3 + 3 8 Z t ∂ j x i s D x s 5 d D D x · 2 E s 24 2339 we only have to note that by Lemmas 1.2 and 3.1 D ∂ j x i · , D x · 2 E t = − 2 Z t X k ,l,m,n ∂ j x k s ∂ m x l s ∂ m x n s ∂ k ∂ l b i ,n 0 ds =β L − β N Z t ∂ j x i s D x s 2 ds + β L + β N Z t X k ,m ∂ j x k s ∂ m x i s ∂ m x k s ds 25 which combined with Lemmas 1.2 and 3.1 and put into 24 yields ∂ j x i t D x t = δ i j p d + Z t X k ∂ k F i ds , x s ∂ j x k s D x s − c Z t ∂ j x i s D x s ds − Z t X k ,l,m ∂ m F k ds , x s ∂ l x m s ∂ l x k s ∂ j x i s D x s 3 − d − 1β N + β L − 2c 2 Z t ∂ j x i s D x s ds + β N − β L 2 Z t ∂ j x i s D x s ds − β N + β L 2 Z t X k ,l ∂ j x k s ∂ l x i s ∂ l x k s D x s 3 ds + 3 4 β L − β N Z t ∂ j x i s D x s ds + 3 4 β N + β L Z t X k ,l,m,n ∂ l x k s ∂ l x n s ∂ m x k s ∂ m x n s ∂ j x i s D x s 5 ds . 26 This proves Proposition 4.3. ƒ Of course the latter implies ∂ j x i s D x s − ∂ j y i s D y s = Z t X k ∂ k F i ds , x s ∂ j x k s D x s − ∂ k F i ds , y s ∂ j y k s D y s − Z t X k ,l,m   ∂ m F k ds , x s ∂ l x m s ∂ l x k s ∂ j x i s D x s 3 − ∂ m F k ds , y s ∂ l y m s ∂ l y k s ∂ j y i s D y s 3   + 1 4 − d 2 β N − 1 4 β L Z t ∂ j x i s D x s − ∂ j y i s D y s ds − β N + β L 2 Z t X k ,l   ∂ j x k s ∂ l x i s ∂ l x k s D x s 3 − ∂ j y k s ∂ l y i s ∂ l y k s D y s 3   ds + 3 4 β N + β L Z t X k ,l,m,n   ∂ l x k s ∂ l x n s ∂ m x k s ∂ m x n s ∂ j x i s D x s 5 − ∂ l y k s ∂ l y n s ∂ m y k s ∂ m y n s ∂ j y i s D y s 5   ds . 27 2340 Letting V I I t := Z t X k ∂ k F i ds , x s ∂ j x k s D x s − ∂ k F i ds , y s ∂ j y k s D y s , 28 V I I I t := Z t X k ,l,m   ∂ m F k ds , x s ∂ l x m s ∂ l x k s ∂ j x i s D x s 3 − ∂ m F k ds , y s ∂ l y m s ∂ l y k s ∂ j y i s D y s 3   29 we have to compute the cross variations to apply Itô’s formula for powers to 27. 〈V I I〉 t = − Z t X k ,l   ∂ j x k s ∂ j x l s D x s 2 + ∂ j y k s ∂ j y l s D y s 2   ∂ k ∂ l b i ,i 0 ds + Z t X k ,l ∂ j x k s ∂ j y l s D x s D y s + ∂ j y k s ∂ j x l s D y s D x s ∂ k ∂ l b i ,i x s − y s ds = − X k ,l Z t ∂ j x k s D x s − ∂ j y k s D y s ∂ j x l s D x s − ∂ j y l s D y s β N − β L δ ki δ l i − β N δ kl ds + 2 Z t X k ,l ∂ j x k s ∂ j y l s D x s D y s ” ∂ k ∂ l b i ,i x s − y s − ∂ k ∂ l b i ,i — ds =β L − β N Z t ∂ j x i s D x s − ∂ j y i s D y s 2 ds + β N Z t X k ∂ j x k s D x s − ∂ j y k s D y s 2 ds + 2 Z t X k ,l ∂ j x k s ∂ j y l s D x s D y s ˜b i ,i k ,l x s − y s ds 30 and similarly 〈V I I I〉 t = β L + β N 2 Z t X k ,n   X l ∂ l x n s ∂ l x k s ∂ j x i s D x s 3 − ∂ l y n s ∂ l y k s ∂ j y i s D y s 3   2 ds + β L − β N 2 Z t ∂ j x i s D x s − ∂ j y i s D y s 2 ds 31 + 2 X k ,l,m,n,p,r Z t ∂ l x m s ∂ l x k s ∂ j x i s ∂ p y r s ∂ p y n s ∂ j y i s D x s 3 D y s 3 ˜b k ,n r ,m x s − y s ds 2341 as well as V I I · , V I I I · t = β L − β N 2 Z t ∂ j x i s D x s − ∂ j y i s D y s 2 ds + β L + β N 2 Z t X k ,l ∂ j x k s D x s − ∂ j y k s D y s   ∂ l x k s ∂ l x i s ∂ j x i s D x s 3 − ∂ l y k s ∂ l y i s ∂ j y i s D y s 3   ds + X k ,l,m,n Z t   ∂ j x k s ∂ m y n s ∂ m y l s ∂ j y i s D x s D y s 3 + ∂ j y k s ∂ m x n s ∂ m x l s ∂ j x i s D y s D x s 3   ˜ b i ,l k ,n x s − y s ds. 32 The combination of 30, 31 and 32 with 27 and Itô’s formula now yields for X i j t := ∂ j x i t k D x t k − ∂ j y i t k D y t k the following note that X i jq t means X i j t q . 2342 Proposition 4.4 formula H. We have for q ≥ q that X i jq t =q Z t X i jq−1 s X k ∂ k F i ds , x s ∂ j x k s D x s − ∂ k F i ds , y s ∂ j y k s D y s − q Z t X i jq−1 s X k ,l,m   ∂ m F k ds , x s ∂ l x m s ∂ l x k s ∂ j x i s D x s 3 − ∂ m F k ds , y s ∂ l y m s ∂ l y k s ∂ j y i s D y s 3   + β L − β N 4 q 2 − d − 1 2 β N q − 1 2 β L q Z t X i jq s ds + qq − 1 2 β N Z t X i jq−2 s X k X k j2 s ds − q β N + β L 2 Z t X i jq−1 s X k ,l   ∂ j x k s ∂ l x i s ∂ l x k s D x s 3 − ∂ j y k s ∂ l y i s ∂ l y k s D y s 3   ds + qq − 1 β N + β L 4 Z t X i jq−2 s X k ,n   X l ∂ l x n s ∂ l x k s ∂ j x i s D x s 3 − ∂ l y n s ∂ l y k s ∂ j y i s D y s 3   2 ds − qq − 1 β N + β L 2 Z t X i jq−2 s X k ,l X k j s   ∂ l x k s ∂ l x i s ∂ j x i s D x s 3 − ∂ l y k s ∂ l y i s ∂ j y i s D y s 3   ds + 3 4 q β N + β L Z t X i jq−1 s X k ,l,m,n ∂ l x k s ∂ l x n s ∂ m x k s ∂ m x n s ∂ j x i s D x s 5 ∂ l y k s ∂ l y n s ∂ m y k s ∂ m y n s ∂ j y i s D y s 5 ds + qq − 1 Z t X i jq−2 s X k ,l ∂ j x k s ∂ j y l s D x s D y s ˜b i ,i k ,l x s − y s ds − qq − 1 Z t X i jq−2 s X k ,l,m,n   ∂ j x k s ∂ m y n s ∂ m y l s ∂ j y i s D x s D y s 3 + ∂ j y k s ∂ m x n s ∂ m x l s ∂ j x i s D y s D x s 3   ˜ b i ,l k ,n x s − y s ds + qq − 1 Z t X i jq−2 s X k ,l,m,n,p,r ∂ l x m s ∂ l x k s ∂ j x i s ∂ p y r s ∂ p y n s ∂ j y i s D x s 3 D y s 3 ˜b k ,n r ,m x s − y s ds. 33 Proof: There is nothing left to show. ƒ Proposition 4.4 will be useful to estimate the expectation in Lemma 2.3 on the event {T ≤ τ} but since this requires some additional preparations we will first consider the reversed case in the following intermezzo.

4.3 Treating Small

Dokumen yang terkait

AN ALIS IS YU RID IS PUT USAN BE B AS DAL AM P E RKAR A TIND AK P IDA NA P E NY E RTA AN M E L AK U K A N P R AK T IK K E DO K T E RA N YA NG M E N G A K IB ATK AN M ATINYA P AS IE N ( PUT USA N N O MOR: 9 0/PID.B /2011/ PN.MD O)

0 82 16

ANALISIS FAKTOR YANGMEMPENGARUHI FERTILITAS PASANGAN USIA SUBUR DI DESA SEMBORO KECAMATAN SEMBORO KABUPATEN JEMBER TAHUN 2011

2 53 20

EFEKTIVITAS PENDIDIKAN KESEHATAN TENTANG PERTOLONGAN PERTAMA PADA KECELAKAAN (P3K) TERHADAP SIKAP MASYARAKAT DALAM PENANGANAN KORBAN KECELAKAAN LALU LINTAS (Studi Di Wilayah RT 05 RW 04 Kelurahan Sukun Kota Malang)

45 393 31

FAKTOR – FAKTOR YANG MEMPENGARUHI PENYERAPAN TENAGA KERJA INDUSTRI PENGOLAHAN BESAR DAN MENENGAH PADA TINGKAT KABUPATEN / KOTA DI JAWA TIMUR TAHUN 2006 - 2011

1 35 26

A DISCOURSE ANALYSIS ON “SPA: REGAIN BALANCE OF YOUR INNER AND OUTER BEAUTY” IN THE JAKARTA POST ON 4 MARCH 2011

9 161 13

Pengaruh kualitas aktiva produktif dan non performing financing terhadap return on asset perbankan syariah (Studi Pada 3 Bank Umum Syariah Tahun 2011 – 2014)

6 101 0

Pengaruh pemahaman fiqh muamalat mahasiswa terhadap keputusan membeli produk fashion palsu (study pada mahasiswa angkatan 2011 & 2012 prodi muamalat fakultas syariah dan hukum UIN Syarif Hidayatullah Jakarta)

0 22 0

Pendidikan Agama Islam Untuk Kelas 3 SD Kelas 3 Suyanto Suyoto 2011

4 108 178

ANALISIS NOTA KESEPAHAMAN ANTARA BANK INDONESIA, POLRI, DAN KEJAKSAAN REPUBLIK INDONESIA TAHUN 2011 SEBAGAI MEKANISME PERCEPATAN PENANGANAN TINDAK PIDANA PERBANKAN KHUSUSNYA BANK INDONESIA SEBAGAI PIHAK PELAPOR

1 17 40

KOORDINASI OTORITAS JASA KEUANGAN (OJK) DENGAN LEMBAGA PENJAMIN SIMPANAN (LPS) DAN BANK INDONESIA (BI) DALAM UPAYA PENANGANAN BANK BERMASALAH BERDASARKAN UNDANG-UNDANG RI NOMOR 21 TAHUN 2011 TENTANG OTORITAS JASA KEUANGAN

3 32 52