Treating Small getdoc71a6. 257KB Jun 04 2011 12:04:31 AM

Proposition 4.4 formula H. We have for q ≥ q that X i jq t =q Z t X i jq−1 s X k ∂ k F i ds , x s ∂ j x k s D x s − ∂ k F i ds , y s ∂ j y k s D y s − q Z t X i jq−1 s X k ,l,m   ∂ m F k ds , x s ∂ l x m s ∂ l x k s ∂ j x i s D x s 3 − ∂ m F k ds , y s ∂ l y m s ∂ l y k s ∂ j y i s D y s 3   + β L − β N 4 q 2 − d − 1 2 β N q − 1 2 β L q Z t X i jq s ds + qq − 1 2 β N Z t X i jq−2 s X k X k j2 s ds − q β N + β L 2 Z t X i jq−1 s X k ,l   ∂ j x k s ∂ l x i s ∂ l x k s D x s 3 − ∂ j y k s ∂ l y i s ∂ l y k s D y s 3   ds + qq − 1 β N + β L 4 Z t X i jq−2 s X k ,n   X l ∂ l x n s ∂ l x k s ∂ j x i s D x s 3 − ∂ l y n s ∂ l y k s ∂ j y i s D y s 3   2 ds − qq − 1 β N + β L 2 Z t X i jq−2 s X k ,l X k j s   ∂ l x k s ∂ l x i s ∂ j x i s D x s 3 − ∂ l y k s ∂ l y i s ∂ j y i s D y s 3   ds + 3 4 q β N + β L Z t X i jq−1 s X k ,l,m,n ∂ l x k s ∂ l x n s ∂ m x k s ∂ m x n s ∂ j x i s D x s 5 ∂ l y k s ∂ l y n s ∂ m y k s ∂ m y n s ∂ j y i s D y s 5 ds + qq − 1 Z t X i jq−2 s X k ,l ∂ j x k s ∂ j y l s D x s D y s ˜b i ,i k ,l x s − y s ds − qq − 1 Z t X i jq−2 s X k ,l,m,n   ∂ j x k s ∂ m y n s ∂ m y l s ∂ j y i s D x s D y s 3 + ∂ j y k s ∂ m x n s ∂ m x l s ∂ j x i s D y s D x s 3   ˜ b i ,l k ,n x s − y s ds + qq − 1 Z t X i jq−2 s X k ,l,m,n,p,r ∂ l x m s ∂ l x k s ∂ j x i s ∂ p y r s ∂ p y n s ∂ j y i s D x s 3 D y s 3 ˜b k ,n r ,m x s − y s ds. 33 Proof: There is nothing left to show. ƒ Proposition 4.4 will be useful to estimate the expectation in Lemma 2.3 on the event {T ≤ τ} but since this requires some additional preparations we will first consider the reversed case in the following intermezzo.

4.3 Treating Small

|x − y| And Large T Since we obviously have from Schwarz’ inequality that E – sup ≤t≤T |ψ t x − ψ t y| q 11 {T ≥τ} ™ 1 q ≤ E – sup ≤t≤T |ψ t x − ψ t y| 2q ™ 1 2q P [T ≥ τ] 1 2q 34 it seems reasonable to compute some useful estimate for the tails of τ. We will also immediatly specify conditions on r and ˜r. Assume first with Lemma 1.3 that ˜r ¯r is small enough to ensure that for any 0 ≤ r ≤ ˜r we have p 2 1 − B L r ≤ 2 p β L r and d − 1 1 − B N r r − cr ≤ 2d − 1β N − c r. 35 2343 Lemma 4.5 tails of τ . If we assume q ≥ q then we have for T ≤ log ˜r |x− y| 128β L q ∧ log ˜r |x− y| 4 p β L [ 2d −1β N −c−2β L ] = log ˜r |x− y| 128β L q that P [T ≥ τ] ≤ 2 ˜r 2q |x − y| 2q ∧ 2 ˜r 4q |x − y| 4q . Proof: Let X t = |x − y| + R t 2 p β L X s dW s + R t 2d − 1β N − c X s ds i.e. X t := |x − y| exp n 2 p β L W s + 2d − 1β N − c − 2β L t o for some BM W t t ≥0 . Then we may start with see 3 and 35 P [T ≥ τ] =P – sup ≤t≤T |x t − y t | ≥ ˜r ™ ≤ P – sup ≤t≤T X t ≥ ˜r ™ 36 =P   sup ≤t≤T W t ≥ 1 2 p β L log ˜r |x − y| − 2d − 1β N − 2β L − c + T   ≤P    sup ≤t≤1 W t ≥ log ˜r |x− y| 2 p β L T − 2d − 1β N − 2β L − c + p T    =: I X . Let first 2d − 1β N − 2β L − c ≤ 0. Then we have using 1 − Φt ≤ e −12t 2 that I X ≤2   1 − Φ    log ˜r |x− y| 2 p β L T       ≤ 2 e − 1 8  log ˜r |x− y| ‹ 2 βL T =2 |x − y| ˜r 1 8βL T log ˜r |x− y| ≤ 2 ˜r 2q |x − y| 2q 37 for T ≤ log ˜r |x− y| 16β L q remember |x − y| r ˜r . Let now 2d − 1β N − 2β L − c 0. In this case we can use for T ≤ log ˜r |x− y| 4 p β L [ 2d −1β N −c−2β L ] ∧ log ˜r |x− y| 128β L q that I X =P    sup ≤t≤1 W t ≥ log ˜r |x− y| 2 p β L T − 2d − 1β N − 2β L − c p T    ≤P    sup ≤t≤1 W t ≥ log ˜r |x− y| 4 p β L T    = 2   1 − Φ    log ˜r |x− y| 4 p β L T       ≤2 exp ¨ − 1 2 1 16β L T log ˜r |x − y| 2 « = 2 |x − y| ˜r log ˜r |x− y| 32βL T ≤2 |x − y| 2q ˜r 2q ∧ 2 |x − y| 4q ˜r 4q . 38 The proof is complete. ƒ 2344 Lemma 4.6 estimate for T after τ. For |x − y| ≤ r ≤ e −1 ˜r and arbitrary q ≥ q and T 0 we have E – sup ≤t≤T |ψ t x − ψ t y| q 11 {T ≥τ} ™ 1q ≤ ¯c 2 |x − y| 2 e Λ 2 + 1 2 q σ 2 2 T 39 with Λ 2 := Λ 1 ∨ 1, σ 2 := p 2σ 1 ∨ 2 p 128β L ∨ 2 and ¯c 2 := p 2 ¯ C 1 ˜r ∨ 1 ˜r β N +β L 128β L + p 2π˜ce − 5 12 p 16β L ∨ 2β L +β N ˜r ∨ 2e − 5 12 p 256˜cπβ L ˜r . Proof: If T ≤ log ˜r |x− y| 128β L q ∧ log ˜r |x− y| 4 p β L [ 2d −1β N −c−2β L ] = log ˜r |x− y| 128β L q then we just have to combine Lemmas 4.2 and 4.5 with 34 to obtain E – sup ≤t≤T |ψ t x − ψ t y| q 11 {T ≥τ} ™ 1q ≤ |x − y| ¯ C 1 ˜r 2 1 2q e € Λ 1 + 1 2 σ 2 1 2q Š T which means we only have to consider the case T ≥ log ˜r |x− y| 128β L q . By Lemma 4.2 we first observe for T := log ˜r |x− y| 128β L q that E – sup ≤t≤T |ψ t x − ψ t y| q ™ 1q ≤ β N + β L log ˜r |x− y| 128β L q + 2e − 5 12 p 2π˜c p q + 1 s log ˜r |x− y| 128β L q ≤   β N + β L 128β L + p 2π˜ce − 5 12 p 16β L   ˜r |x − y| ≤   β N + β L 128β L + p 2π˜ce − 5 12 p 16β L   ˜r |x − y| Λ2+ 1 2 σ2 2 q 128βL q −1 40 = 1 ˜r   β N + β L 128β L + p 2π˜ce − 5 12 p 16β L   |x − y|e Λ2+ 1 2 σ2 2 q 128βL q log ˜r |x− y| ≤ ¯c 2 |x − y|e Λ 2 + 1 2 q σ 2 2 T . Since f : T 7→ ¯c 2 |x − y|e Λ 2 + 1 2 q σ 2 2 T is a convex function and g : T 7→ β N + β L T + 2e − 5 12 p 2π˜c p q + 1 p T is concave one we may just check that f ′ T ≥ g ′ T . g ′ T = β N + β L + e − 5 12 p 256π˜cβ L p qq + 1 1 log ˜r |x− y| ≤ ¯c 2 ˜r 2 Λ 2 + 1 2 q σ 2 2 ˜r |x − y| Λ2+ 1 2 σ2 2 q 128βL −1 + ¯c 2 ˜r 2 Λ 2 + 1 2 q σ 2 2 ˜r |x − y| Λ2+ 1 2 σ2 2 q 128βL −1 =¯c 2 Λ 2 + 1 2 q σ 2 2 ˜r |x − y| Λ2+ 1 2 σ2 2 q 128βL |x − y| = f ′ T . 41 Thus the proof of Lemma 4.6 is complete. ƒ To treat 33 we finally need the following proposition. 2345 Proposition 4.7 expectation of zero-mean-martingales on rare events. For i , j ∈ {1, . . . , d} we define ˇ M t = ˇ M i j t := R t X i jq−1 s d V I I t − R t X i jq−1 s d V I I I t . Then we have 1. ˇ M t is a zero-mean-martingale and we have any t ≥ 0 that ¬ ˇ M ¶ t ≤ ˇct a.s. for ˇc := 4d 2 + 2d 4 + d 6 max k ,l,m,n sup z ∈R d ∂ k ∂ l b m ,n z. 2. For all ≤ t ≤ T and q ≥ q we get that E ” ˇ M t 11 {T ≤τ} — ≤ |x − y| 2q ¯c 3 ˜r 2q e Λ 3 + 1 2 σ 2 3 q+ σ 2 4 q 2 T =: f T for ¯c 3 := p 2ˇc ∨ q ˇc 128β L ∨ 1, Λ 3 := 1 2e , σ 3 := q 64β L e ∨ 128β L ˇc 1 4 and σ 4 := p 256β L . Proof: 1. is clear from the definition of ˇ M except for the value of ˇc. This value follows from 30, 31 and 32 since ¬ ˇ M ¶ t ≤ 〈V I I〉 i + 〈V I I I〉 t + 2| 〈V I I, V I I I〉 t |. For the proof of 2. first assume T ≤ log ˜r |x− y| 128β L q . From Lemma 4.5 we know that P [T τ] ≤ |x − y| 4q 2 ˜r 4q . This combined with Schwarz’ inequality and 1. yields E ” ˇ M t 11 {T ≤τ} — = E ” ˇ M t 11 {T τ} — ≤ q E ”¬ ˇ M ¶ T —p P [T τ] ≤ p 2ˇcT |x − y| 2q ˜r 2q ≤ p 2ˇc |x − y| 2q ˜r 2q e T 2e 42 which proves Proposition 4.7 in this case. We always have as above that E ” ˇ M t 11 {T ≤τ} — ≤ p ˇcT =: gT and so we can conclude for the same T as before gT = È ˇc 128β L r log ˜r |x − y| ≤ È ˇc 128β L ˜r |x − y| 1 2e ≤¯c 3 ˜r |x − y| σ2 3 128βL ≤ ¯c 3 ˜r |x − y| Λ3+ σ 2 3 q+ σ2 4 q2 128βL q |x − y| ˜r 2q =|x − y| 2q ¯c 3 ˜r 2q e Λ 3 + 1 2 σ 2 3 q+ σ 2 4 q 2 T =: f T 43 so now with Lemma 1.4 we only have to establish the inequality g ′ T ≤ f ′ T to complete the proof of Proposition 4.7. The proof of this is as follows. g ′ T = 1 2 s 128β L q ˇc log ˜r |x− y| ≤ 1 2 p 128β L q ˇc 44 ≤ |x − y| ˜r 2 Λ 3 + 1 2 σ 2 3 q + σ 2 4 q 2 ˜r |x − y| Λ3+ 1 2 σ2 3 q+ σ2 4 q2 128βL = f ′ T . The proof is complete. ƒ 2346

4.4 Evaluation Of Formula H

Dokumen yang terkait

AN ALIS IS YU RID IS PUT USAN BE B AS DAL AM P E RKAR A TIND AK P IDA NA P E NY E RTA AN M E L AK U K A N P R AK T IK K E DO K T E RA N YA NG M E N G A K IB ATK AN M ATINYA P AS IE N ( PUT USA N N O MOR: 9 0/PID.B /2011/ PN.MD O)

0 82 16

ANALISIS FAKTOR YANGMEMPENGARUHI FERTILITAS PASANGAN USIA SUBUR DI DESA SEMBORO KECAMATAN SEMBORO KABUPATEN JEMBER TAHUN 2011

2 53 20

EFEKTIVITAS PENDIDIKAN KESEHATAN TENTANG PERTOLONGAN PERTAMA PADA KECELAKAAN (P3K) TERHADAP SIKAP MASYARAKAT DALAM PENANGANAN KORBAN KECELAKAAN LALU LINTAS (Studi Di Wilayah RT 05 RW 04 Kelurahan Sukun Kota Malang)

45 393 31

FAKTOR – FAKTOR YANG MEMPENGARUHI PENYERAPAN TENAGA KERJA INDUSTRI PENGOLAHAN BESAR DAN MENENGAH PADA TINGKAT KABUPATEN / KOTA DI JAWA TIMUR TAHUN 2006 - 2011

1 35 26

A DISCOURSE ANALYSIS ON “SPA: REGAIN BALANCE OF YOUR INNER AND OUTER BEAUTY” IN THE JAKARTA POST ON 4 MARCH 2011

9 161 13

Pengaruh kualitas aktiva produktif dan non performing financing terhadap return on asset perbankan syariah (Studi Pada 3 Bank Umum Syariah Tahun 2011 – 2014)

6 101 0

Pengaruh pemahaman fiqh muamalat mahasiswa terhadap keputusan membeli produk fashion palsu (study pada mahasiswa angkatan 2011 & 2012 prodi muamalat fakultas syariah dan hukum UIN Syarif Hidayatullah Jakarta)

0 22 0

Pendidikan Agama Islam Untuk Kelas 3 SD Kelas 3 Suyanto Suyoto 2011

4 108 178

ANALISIS NOTA KESEPAHAMAN ANTARA BANK INDONESIA, POLRI, DAN KEJAKSAAN REPUBLIK INDONESIA TAHUN 2011 SEBAGAI MEKANISME PERCEPATAN PENANGANAN TINDAK PIDANA PERBANKAN KHUSUSNYA BANK INDONESIA SEBAGAI PIHAK PELAPOR

1 17 40

KOORDINASI OTORITAS JASA KEUANGAN (OJK) DENGAN LEMBAGA PENJAMIN SIMPANAN (LPS) DAN BANK INDONESIA (BI) DALAM UPAYA PENANGANAN BANK BERMASALAH BERDASARKAN UNDANG-UNDANG RI NOMOR 21 TAHUN 2011 TENTANG OTORITAS JASA KEUANGAN

3 32 52