General Estimates And Preparation

we get with a completely analogous computation lim sup T →∞ 1 T log P inf ≤t≤T ψ t x ≤ −kT ≤ − 1 2β L h k − β L −d−1β N +2c 2 i 2 + . This completes the proof of Lemma 2.2. ƒ 4 Proof Of Lemma 2.3: The Two-Point Condition

4.1 General Estimates And Preparation

We now turn to the proof of Lemma 2.3 and start with a sketch of proof since it is rather technical. It consists of four steps. 1. Derivation of a SDE for ψ t x − ψ t y involving X i j t := ∂ j x i s k D x s k − ∂ j y i s k D y s k . 2. Derivation of a SDE for X i j t q for q ≥ 2. 3. Obtaining estimates of the type required in Lemma 2.3 for X i j t . This is done for small |x − y| estimating the probability for very fast increase in the beginning and with a Grönwall type argument in the case this increase does not occur. 4. Obtaining the estimate for ψ t x − ψ t y as integrated versions of the ones on the X i j using the Burkholder-Davies-Gundy inequality. Observe that we have by Lemma 3.1 ψ t x − ψ t y = Z t X i , j,k ∂ k F i ds , x s ∂ j x k s ∂ j x i s D x s 2 − ∂ k F i ds , y s ∂ j y k s ∂ j y i s D y s 2 + β L + β N 2 Z t X i , j,k,m ∂ j y k s ∂ j y i s ∂ m y k s ∂ m y i s D y s 4 − ∂ j x k s ∂ j x i s ∂ m x k s ∂ m x i s D x s 4 ds =: ˜ M t + A t . 16 To further analyze the latter we first prove the following lemma. Lemma 4.1 general estimates for A t and ˜ M t . With ˜ M t and A t defined as above the following holds. 1. A.s. we have for all t ≥ 0 that A t ≤ β N + β L t. 2. Introducing the abbreviation ˜b i ,l k ,n z := ∂ k ∂ n b i ,l z − ∂ k ∂ n b i ,l 0 we can write for the quadratic variation of ˜ M ¬ ˜ M ¶ t = β L + β N 2 Z t X i ,k    X j ∂ j x i s ∂ j x k s D x s 2 − ∂ j y i s ∂ j y k s D y s 2    2 ds + 2 X i , j,k,l,m,n Z t ∂ j x i s ∂ j x k s ∂ m y l s ∂ m y n s D x s 2 D y s 2 ˜b i ,l k ,n x s − y s de ≤ ˜ct wherein we put ˜c := 2β L + 2d 6 max i ,l,k,n sup z ∈R d ∂ k ∂ n b i ,l z ∞. 2336 Proof: 1. is clear by definition of A t and Proposition 3.2. Clearly ¬ ˜ M ¶ t equals − X i , j,k,l,m,n Z t ∂ j x k s ∂ j x i s ∂ m x n s ∂ m x l s D x s 4 ∂ k ∂ n b i ,l 0 ds + X i , j,k,l,m,n Z t ∂ j x k s ∂ j x i s ∂ m y n s ∂ m y l s D x s 2 D y s 2 ∂ k ∂ n b i ,l x s − y s ds + X i , j,k,l,m,n Z t ∂ j y k s ∂ j y i s ∂ m x n s ∂ m x l s D y s 2 D x s 2 ∂ k ∂ n b i ,l y s − x s ds − X i , j,k,l,m,n Z t ∂ j y k s ∂ j y i s ∂ m y n s ∂ m y l s D y s 4 ∂ k ∂ n b i ,l 0 ds = − X i , j,k,l,m,n Z t 1 2 β N − β L δ ki δ nl + δ kl δ ni − β N δ kn δ il   ∂ j x k s ∂ j x i s ∂ m x n s ∂ m x l s D x s 4 + ∂ j y k s ∂ j y i s ∂ m y n s ∂ m y l s D y s 4   ds + 2 X i , j,k,l,m,n Z t ∂ j x k s ∂ j x i s ∂ m y n s ∂ m y l s D x s 2 D y s 2 ∂ k ∂ n b i ,l x s − y s ds =: I I + I I I. 17 Using I I = β L − β N t + β L +β N 2 R t P i , j,k,m ∂ j x k s ∂ j x i s ∂ m x k s ∂ m x i s k D x s k 4 + ∂ j y k s ∂ j y i s ∂ m y k s ∂ m y i s k D y s k 4 ds Proposition 3.2 now yields I I ≤ β L −β N t + β N +β L 2 2t = 2β L t and since I I I ≤ 2d 6 max i ,l,k,n sup z ∈R d ∂ k ∂ n b i ,l z t is clear the first part of 2. follows. To prove the second part we have to rearrange 17 using the symmetry and isotropy of of b. ¬ ˜ M ¶ t = − X i , j,k,l,m,n Z t   ∂ j x i s ∂ j x k s D x s 2 − ∂ j y i s ∂ j y k s D y s 2     ∂ m x n s ∂ m x l s D x s 2 − ∂ m y n s ∂ m y l s D y s 2   ∂ k ∂ n b i ,l 0 ds 18 + 2 X i , j,k,l,m,n Z t ∂ j x i s ∂ j x k s ∂ m y l s ∂ m y n s D x s 2 D y s 2 ˜b i ,l k ,n x s − y s ds =: I V + V. 2337 Since again by Lemma 1.3 we have ∂ k ∂ n b i ,l 0 = 1 2 β N − β L δ ki δ nl + δ kl δ ni − β N δ kn δ il we get that I V equals β L − β N 2 X i , j,l,m   ∂ j x i s 2 D x s 2 − ∂ j y i s 2 D y s 2     ∂ m x l s 2 D x s 2 − ∂ m y l s 2 D y s 2   ds + β L − β N 2 X i , j,k,m Z t   ∂ j x i s ∂ j x k s D x s 2 − ∂ j y i s ∂ j y k s D y s 2     ∂ m x i s ∂ m x k s D x s 2 − ∂ m y i s ∂ m y k s D y s 2   ds + β N X i , j,k,m Z t   ∂ j x i s ∂ j x k s D x s 2 − ∂ j y i s ∂ j y k s D y s 2     ∂ m x k s ∂ m x i s D x s 2 − ∂ m y k s ∂ m y i s D y s 2   ds = β L + β N 2 Z t X i ,k    X j ∂ j x i s ∂ j x k s D x s 2 − ∂ j y i s ∂ j y k s D y s 2    2 ds . 19 This completes the proof of Lemma 4.1. ƒ This Lemma shows that we have to control terms like ∂ j x i s k D x s k − ∂ j y i s k D y s k . We postpone this until we will have derived the following estimate from Lemma 4.1. Lemma 4.2 a priori bounds for the ψ-estimation . 1. We have for each x , y ∈ R d , T 0 and q ≥ 1that E ” sup ≤t≤T |ψ t x − ψ t y| q — 1q ≤ β N + β L T + 2e − 5 12 p 2π˜c p q + 1 p T . 2. We have for each x , y ∈ R d , T 0 and q ≥ 1 that E ” sup ≤t≤T |ψ t x − ψ t y| q — 1q ≤ ¯ C 1 e € Λ 1 + 1 2 σ 2 1 q Š T with ¯ C 1 := β N + β L + 2e 1 4e − 5 12 p 2π˜c, Λ 1 := 1e and σ 1 := p 2e. 3. Let r 0 be fixed. We have for any x, y ∈ R d with |x − y| ≥ r, T 0 and q ≥ 1 that E ” sup ≤t≤T |ψ t x − ψ t y| q — 1q ≤ ¯c 1 |x − y|e € Λ 1 + 1 2 σ 2 1 Š T for ¯c 1 := 1 r h β N + β L + 2e − 5 12 + 1 4e p 2π˜c i and Λ 1 and σ 1 as before. Proof: Once again observe that by the triangle inequality E – sup ≤t≤T |ψ t x − ψ t y| q ™ 1q ≤E – sup ≤t≤T A q t ™ 1q + E – sup ≤t≤T ˜ M q t ™ 1q ≤ β N + β L T + E – sup ≤t≤T ˜ M q t ™ 1q =:β N + β L T + V I. 20 Since we can write ˜ M t = W〈 ˜ M 〉 t and ¬ ˜ M ¶ t ≤ ˜ct a.s. we get using E ” sup ≤t≤T ˜ M q t — ≤ E ” sup ≤t≤˜cT W q t — = ˜cT q 2 Æ 2 π Γ q+ 1 2 2 2 q+ 1 2 2338 that Stirling’s formula for the Gamma function implies V I ≤2π − 1 2q 2 q+ 1 2q Γ q + 1 2 1 q p ˜cT ≤ 2e − 5 12 p 2π˜c p q + 1 p T . 21 Thus 1. follows. For the proof of 2. it is sufficient to observe that since for any t ≥ 0 we have t ≤ e t e and p t ≤ 14 + t we also get β N + β L T + 2e − 5 12 p 2π˜c p q + 1 p T ≤ β N + β L e T e + 2e − 5 12 p 2π˜ce p q+ 1 p T e ≤ β N + β L e T e + 2e − 5 12 p 2π˜ce 14+q+1T e ≤ h β N + β L + 2e 1 4e − 5 12 p 2π˜c i e q+ 1 E T . 22 This proofs 2. and 3. follows from this by using |x− y| r ≤ 1. ƒ Since we can now control the moments of ψ t x − ψ t y provided x and y are not too close to each other we introduce the following stopping time. Let ¯r be chosen according to Lemma 1.3 and ˜r ≤ ¯r to be specified later. Remember that we assumed ¯r ≤ 1. We now define for x, y ∈ R d with |x − y| ≤ r the stopping time τ := inf t {|x t − y t | ≥ ˜r} and assume r ˜r in the following which ensures τ 0 a.s..

4.2 Derivation Of Formula H

Dokumen yang terkait

AN ALIS IS YU RID IS PUT USAN BE B AS DAL AM P E RKAR A TIND AK P IDA NA P E NY E RTA AN M E L AK U K A N P R AK T IK K E DO K T E RA N YA NG M E N G A K IB ATK AN M ATINYA P AS IE N ( PUT USA N N O MOR: 9 0/PID.B /2011/ PN.MD O)

0 82 16

ANALISIS FAKTOR YANGMEMPENGARUHI FERTILITAS PASANGAN USIA SUBUR DI DESA SEMBORO KECAMATAN SEMBORO KABUPATEN JEMBER TAHUN 2011

2 53 20

EFEKTIVITAS PENDIDIKAN KESEHATAN TENTANG PERTOLONGAN PERTAMA PADA KECELAKAAN (P3K) TERHADAP SIKAP MASYARAKAT DALAM PENANGANAN KORBAN KECELAKAAN LALU LINTAS (Studi Di Wilayah RT 05 RW 04 Kelurahan Sukun Kota Malang)

45 393 31

FAKTOR – FAKTOR YANG MEMPENGARUHI PENYERAPAN TENAGA KERJA INDUSTRI PENGOLAHAN BESAR DAN MENENGAH PADA TINGKAT KABUPATEN / KOTA DI JAWA TIMUR TAHUN 2006 - 2011

1 35 26

A DISCOURSE ANALYSIS ON “SPA: REGAIN BALANCE OF YOUR INNER AND OUTER BEAUTY” IN THE JAKARTA POST ON 4 MARCH 2011

9 161 13

Pengaruh kualitas aktiva produktif dan non performing financing terhadap return on asset perbankan syariah (Studi Pada 3 Bank Umum Syariah Tahun 2011 – 2014)

6 101 0

Pengaruh pemahaman fiqh muamalat mahasiswa terhadap keputusan membeli produk fashion palsu (study pada mahasiswa angkatan 2011 & 2012 prodi muamalat fakultas syariah dan hukum UIN Syarif Hidayatullah Jakarta)

0 22 0

Pendidikan Agama Islam Untuk Kelas 3 SD Kelas 3 Suyanto Suyoto 2011

4 108 178

ANALISIS NOTA KESEPAHAMAN ANTARA BANK INDONESIA, POLRI, DAN KEJAKSAAN REPUBLIK INDONESIA TAHUN 2011 SEBAGAI MEKANISME PERCEPATAN PENANGANAN TINDAK PIDANA PERBANKAN KHUSUSNYA BANK INDONESIA SEBAGAI PIHAK PELAPOR

1 17 40

KOORDINASI OTORITAS JASA KEUANGAN (OJK) DENGAN LEMBAGA PENJAMIN SIMPANAN (LPS) DAN BANK INDONESIA (BI) DALAM UPAYA PENANGANAN BANK BERMASALAH BERDASARKAN UNDANG-UNDANG RI NOMOR 21 TAHUN 2011 TENTANG OTORITAS JASA KEUANGAN

3 32 52