The homogeneous setting getdoc8cb2. 256KB Jun 04 2011 12:04:39 AM

H OMOGENEOUS SETTING i For any 1 ≤ k ≤ n is given a sequence X k j , j = 1 . . . n, which is a reordering of X j , j = 1 . . . n with X k n = X k . We attach to each k the σ-algebras G k j = σX k i , i ≤ j, j ≤ n. 31 ii For any 1 ≤ j, k ≤ n is given a sequence X k, j i i j , which is a reordering of X k i i j . We attach to each such pair k, j the σ-algebras H k, j i = σX k, j l , l ≤ i, i j. 32 k j G X k X k 1 X k n−1 X k n−2 X k j X k X k n−2 X k n−1 X k j H i kj This setting is adequate for dealing with mixing random fields in which case each index k corre- sponds to some point P k of the space; for each k, the sequence X k j j will be obtained by sorting the original sequence X j in decreasing order of the distance dP j , P k , and G k j will be the σ-field generated by the random variables setting on the j more distant points from P k , say P k 1 ,. . . P k j ; it is natural to define X k, j i as X l where P l is the i-th more distant point from {P k , P k j }, but the choice X k, j i = X k i , H k, j i = G k i , is typically good enough for random fields over the Euclidean space see Section 4.

3.1 The homogeneous setting

The following theorem states a Gaussian approximation result 33 and an exponential bound 34. Equation 33 may seem rather overtechnical; the reader can think first of the case p = 1, q = ∞, which is natural if h has bounded third derivatives; however the proof of 34 utilizes the case p = ∞, q = 1. Theorem 7. Set for 1 ≤ p ≤ +∞ r p = n X k, j=1    1 2 kE[X k |G k j ]X k j 2 k p + X i ≤ j−1 kE[X k X k j |H k, j i ] − E[X k X k j ]X k, j i k p + X i ≥ j |E[X k X k j ]|kX k i k p    . 766 Let h be a three time differentiable function of n variables, and N be a centered Gaussian vector inde- pendent of X = X 1 , . . . X n with the same covariance matrix. Then for any 1 ≤ p ≤ ∞ |E[hX ] − E[hN]| ≤ r p 3 sup i, j,k sup ≤t≤1 sup Y ∈X kh ′′′ i jk t Y + p 1 − t 2 N k q 33 where q = p p − 1, and X is the set of processes Y i = α i X i where α is allowed to be any sequence of [0, 1] n . The sum S = P k X k satisfies for any t E[e tS ] ≤ exp ‚ σ 2 ∗ t 2 2 + r ∞ t 3 3 Œ , σ 2 ∗ = max I ⊂{1,2,...n} E    X i ∈I X i 2    . 34 R EMARKS . If the X k ’s are independent r p = P VarX k kX k k p + kX 3 k k p 2. Hence under strong enough mixing assumptions, r p σ 2 ∗ is expected to tend to 0 as the number of variables n tends to infinity; in this case, 33 leads in particular to the central limit theorem for S σ ∗ . For the sake of clarity, we shall start the proof with a preparatory lemma: We know that if Y, Z is a Gaussian vector and Y is scalar centered, for any differentiable function g one has E[Y gZ] = X i E[Y Z i ]E[g ′ i Z], where g ′ i x = d d x i gx under appropriate integrability conditions. We shall see that, when the variables are not Gaussian, bounds of the difference between both sides when Y varies among the coordinates of Z provide an efficient measure, on some sense, of how far Z is from a Gaussian vector of the same covariance this will appear in Equation 37 below. Next lemma provides a way to estimate such a bound: Lemma 8. Let Y be a centered random variable and Z be a random vector on R n . For any 1 ≤ j ≤ n is given and sequence Z j i i j which is a reordering of Z i i j . Let A j and B j i , i j, be σ-algebras such that A j ⊃ σZ 1 , . . . Z j and B j i ⊃ σZ j 1 , . . . Z j i and r p = n X j=1 1 2 kE[Y |A j ]Z j 2 k p + j −1 X i=1 kE[Y Z j |B j i ] − E[Y Z j ]Z j i k p + n X i= j |E[Y Z j ]| kZ i k p . Then for any function g two times differentiable on R n , with first resp. second order derivatives denoted by g ′ j resp. g ′′ i j , and 1 ≤ p ≤ ∞: |E[Y gZ] − X j E[Y Z j ]E[g ′ j Z]| ≤ r p sup i, j, α kg ′′ i j α 1 Z 1 , . . . α n Z n k q , 1 p + 1 q = 1 35 where the supremum over α is taken over all sequences of [0, 1] n having no more than one term different from 0 or 1. 767 Proof. We set ¯ Z j = Z 1 , . . . Z j , 0, . . . 0 and ¯ Z j i is defined by setting to zero all entries in ¯ Z j which are not a Z j l for some l ≤ i; hence ¯ Z j j −1 = ¯ Z j −1 and ¯ Z j = 0. The key observation is that if all terms of the sums below are integrable we have E[Y gZ] − n X j=1 E[Y Z j ]E[g ′ j Z] =E n X j=1 Y g ¯ Z j − g ¯Z j −1 − Z j g ′ j ¯ Z j −1 + E n X j=1 j −1 X i=1 Y Z j − E[Y Z j ]g ′ j ¯ Z j i − g ′ j ¯ Z j i −1 − E n X j=1 X i ≥ j E[Y Z j ]g ′ j ¯ Z i − g ′ j ¯ Z i −1 . 36 Clearly indeed, for any j, the factors of E[Y Z j ] are the same on both sides, except a residual E[Y Z j ]g ′ j 0 on the right hand side which compensates for a remaining term from the otherwise vanishing sum of the E[Y Z j g ′ j ¯ Z j i ] namely the term i = 0; finally the terms Y g ¯ Z j of the right hand side sum up to E[Y gZ] since E[Y ] = 0. The general identities f x + h − f x − hf ′ x = h 2 Z 1 1 − t f ′′ x + thd t f ′ x + h − f ′ x = h Z 1 f ′′ x + thd t imply that e i is the ith vector of the canonical basis of R n g ¯ Z j − g ¯Z j −1 − Z j g ′ j ¯ Z j −1 = Z 2 j Z 1 1 − tg ′′ j j ¯ Z j −1 + t Z j e j d t g ′ j ¯ Z j i − g ′ j ¯ Z j i −1 = Z j i Z 1 g ′′ i j ¯ Z j i −1 + t Z j i e i d t hence by the Minkowski inequality kZ −2 j g ¯ Z j − g ¯Z j −1 − Z j g ′ j ¯ Z j −1 k q ≤ sup α kg ′′ i j α 1 Z 1 , . . . , α n Z n k q Z 1 1 − td t kZ j i −1 g ′ j ¯ Z j i − g ′ j ¯ Z j i −1 k q ≤ sup α kg ′′ i j α 1 Z 1 , . . . , α n Z n k q and 35 is now only a consequence of 36 and the Hölder inequality. 768 Proof of theorem 7. Set for 0 ≤ t ≤ 1 ϕt = E[ht X + p 1 − t 2 N ]. Using that for any differentiable function f with bounded derivatives E[N k f N ] = P i E[N k N j ]E[ f ′ j N ] we obtain d d t ϕt = X k E[X k h ′ k t X + p 1 − t 2 N ] − t p 1 − t 2 X k E[N k h ′ k t X + p 1 − t 2 N ] = X k E[X k h ′ k t X + p 1 − t 2 N ] − t X k, j E[X k X j ]E[h ′′ k j t X + p 1 − t 2 N ]. 37 Applying n times Lemma 8 with Y = X k , Z j = X k j , Z j i = X k, j i , A j = G k j , B j i = H k, j i and gx = E[h ′ k t x + p 1 − t 2 N ], for k = 1, . . . n we get |ϕ ′ t| ≤ t 2 r p sup i, j,k,Y ∈X kh ′′′ i jk t Y + p 1 − t 2 N k q where X is the family of the processes of the form Y i = α i X i , α ∈ [0, 1] n . This leads to 33. Concerning 34, notice first that an elementary scaling argument reduces to the case t = 1. We consider now the function hx = exp P x i : ϕt = e 1−t 2 σ 2 2 E[ht X ], σ 2 = E[S 2 ] and Equation 37 rewrites: |ϕ ′ t| =| X k E[X k h ′ k t X ]e σ 2 1−t 2 2 − t X k,i E[X k X j ]E[h ′′ k j t X ]e σ 2 1−t 2 2 | ≤t 2 e σ 2 1−t 2 2 r ∞ sup Y ∈X E[ht Y ] 38 by application of Lemma 8 since h ′′′ i jk = h. Hence it we set ψt = e σ 2 ∗ 1−t 2 2 sup Y ∈X E[ht Y ] the reason for the choice of σ ∗ rather than σ will appear soon Equation 38 implies ϕt ≤ϕ0 + r ∞ Z t s 2 ψsds ≤ ψ0 + r ∞ Z t s 2 ψsds. 39 The variance of any Y ∈ X is smaller than σ 2 ∗ due to the fact that the convex function on [0, 1] n α 7→ E[〈α, X 〉 2 ] attains necessarily its maximum on extremal points of [0, 1] n . Hence 39 is again valid if instead of X we put any Y ∈ X in the definition of ϕ since r ∞ and σ ∗ would be smaller, thus ψt ≤ψ0 + r ∞ Z t s 2 ψsds which implies via the Gronwall lemma that ψt ≤ψ0 expr ∞ t 3 3 = expσ 2 ∗ 2 + r ∞ t 3 3. If we set t = 1 in this equation, we get 34 for t = 1. 769

3.2 The inhomogeneous setting

Dokumen yang terkait

AN ALIS IS YU RID IS PUT USAN BE B AS DAL AM P E RKAR A TIND AK P IDA NA P E NY E RTA AN M E L AK U K A N P R AK T IK K E DO K T E RA N YA NG M E N G A K IB ATK AN M ATINYA P AS IE N ( PUT USA N N O MOR: 9 0/PID.B /2011/ PN.MD O)

0 82 16

ANALISIS FAKTOR YANGMEMPENGARUHI FERTILITAS PASANGAN USIA SUBUR DI DESA SEMBORO KECAMATAN SEMBORO KABUPATEN JEMBER TAHUN 2011

2 53 20

EFEKTIVITAS PENDIDIKAN KESEHATAN TENTANG PERTOLONGAN PERTAMA PADA KECELAKAAN (P3K) TERHADAP SIKAP MASYARAKAT DALAM PENANGANAN KORBAN KECELAKAAN LALU LINTAS (Studi Di Wilayah RT 05 RW 04 Kelurahan Sukun Kota Malang)

45 393 31

FAKTOR – FAKTOR YANG MEMPENGARUHI PENYERAPAN TENAGA KERJA INDUSTRI PENGOLAHAN BESAR DAN MENENGAH PADA TINGKAT KABUPATEN / KOTA DI JAWA TIMUR TAHUN 2006 - 2011

1 35 26

A DISCOURSE ANALYSIS ON “SPA: REGAIN BALANCE OF YOUR INNER AND OUTER BEAUTY” IN THE JAKARTA POST ON 4 MARCH 2011

9 161 13

Pengaruh kualitas aktiva produktif dan non performing financing terhadap return on asset perbankan syariah (Studi Pada 3 Bank Umum Syariah Tahun 2011 – 2014)

6 101 0

Pengaruh pemahaman fiqh muamalat mahasiswa terhadap keputusan membeli produk fashion palsu (study pada mahasiswa angkatan 2011 & 2012 prodi muamalat fakultas syariah dan hukum UIN Syarif Hidayatullah Jakarta)

0 22 0

Pendidikan Agama Islam Untuk Kelas 3 SD Kelas 3 Suyanto Suyoto 2011

4 108 178

ANALISIS NOTA KESEPAHAMAN ANTARA BANK INDONESIA, POLRI, DAN KEJAKSAAN REPUBLIK INDONESIA TAHUN 2011 SEBAGAI MEKANISME PERCEPATAN PENANGANAN TINDAK PIDANA PERBANKAN KHUSUSNYA BANK INDONESIA SEBAGAI PIHAK PELAPOR

1 17 40

KOORDINASI OTORITAS JASA KEUANGAN (OJK) DENGAN LEMBAGA PENJAMIN SIMPANAN (LPS) DAN BANK INDONESIA (BI) DALAM UPAYA PENANGANAN BANK BERMASALAH BERDASARKAN UNDANG-UNDANG RI NOMOR 21 TAHUN 2011 TENTANG OTORITAS JASA KEUANGAN

3 32 52