Deviation bounds Bounded difference inequalities

Proof. We set S i = X n 1 + X n 2 + · · · + X n i , i ≤ n and S = 0. Equation 13 implies that e X n ≤ 1 + X n + X 2 n ϕm hence E[e S ] ≤ E[1 + X n + X 2 n ϕme S n −1 ] = E n −1 X i=1 X n e S i − e S i −1 + E[1 + X 2 n ϕme S n −1 ] = E n −1 X i=1 X n X n i tanhX n i 2 X n i e S i + e S i −1 + ϕmE[X 2 n e S n −1 ] + E[e S n −1 ] ≤ E n −1 X i=1 kE[X n |F n i ]X n i k ∞ e S n i + e S i −1 2 + ϕmE[E[X 2 n |F n n −1 ]e S n −1 ] + E[e S n −1 ] ≤ 1 + q n + ϕmv n sup i ≤n−1 E[e S i ] ≤ e q n +ϕmv n sup i ≤n−1 E[e S i ] where q n and v n are the terms corresponding to k = n in the definition of q and v. This proves the result by induction.

2.2 Applications

2.2.1 Deviation bounds

In this section we give the deviation inequalities that can be deduced from the preceding exponential inequalities. We generalize the Bernstein inequality in Equations 18 and 22, and the Hoeffding inequality in Equation 21; one could get Bennett inequalities through a similar process, we refer to Appendix B of [ ? ]. In the martingale case, Equations 19 and 20 do not assume that the variables are bounded, but sums of squares are involved. Theorem 4. With the notations of Theorem 1 we have for any A, y PS ≥ A, 〈X 〉 ≤ y ≤ exp ‚ − A 2 2 y + 8q + 2Am 3 Œ 18 PS ≥ A, [X + ] + 〈X − 〉 ≤ y ≤ exp ‚ − A 2 2 y + 8q Œ 19 PS ≥ A, [X ] + 2〈X 〉 ≤ 3 y ≤ exp ‚ − A 2 2 y + 8q Œ . 20 761 With the notations of Theorem 2 and 3 we have for any A, y PS ≥ A, X i b 2 i ≤ 4 y ≤ exp ‚ − A 2 2 y + 32q Œ 21 PS ≥ A ≤ exp ‚ − A 2 2v + 2q + 2Am 3 Œ . 22 In the martingale case, 21 remains true if we allow a i and b i to be an F i −1 -measurable random variable. R EMARK . Equation 21 is analogous to Corollary 3a of [6]. Proof. Applying the bound 9 to the variables t X i for some t 0, we get log PS ≥ A, 〈X 〉 ≤ y ≤ log E[exp{tS − A − t 2 〈X 〉 − t 2 y t 2 m 2 e t m − tm − 1}] ≤ 4t 2 q + y m 2 e t m − tm − 1 − tA ≤ y + 8q m 2 e t m − tm − 1 − tA. The optimization of this expression w.r.t. t ≥ 0 is classical in the theory of Bennett and Bernstein inequalities and delivers 18; see for instance the Appendix B of [ ? ]. The second inequality is deduced from 10 with the same method: for V = [X + ] + 〈X − 〉 or V = [X ] + 2〈X 〉3 one has log PS ≥ A, V ≤ y ≤ log E[e tS −tA−t 2 V − y2 ] ≤ 4t 2 q + y t 2 2 − tA and we take t = A y + 8q. Equations 21 and 22 are obtained similarly.

2.2.2 Bounded difference inequalities

The above results lead straightforwardly to bounded difference inequalities by using a classical martingale argument of Maurey [ ? ]. Equation 26 is the McDiarmid inequality [? ]. Equation 25 is a Bernstein inequality in the same context. Theorem 5. Let Y = Y 1 , . . . Y n be a zero-mean sequence of independent variables with values in some measured space E. Let f be a measurable function on E n with real values. Set S = f Y − E[ f Y ] D k y, z = f Y 1 , . . . Y k −1 , y, Y k+1 . . . Y n − f Y 1 , . . . Y k −1 , z, Y k+1 . . . Y n Φ k = sup y,z E[D k y, z|Y 1 , . . . Y k −1 ] 23 ∆ k = f Y − E[ f Y |Y 1 , . . . Y k −1 , Y k+1 . . . Y n ] = E[D k Y k , Y ′ k |Y ] m = sup k ess sup ∆ k 762 where Y ′ k is an independent copy of Y k . We assume the measurability of Φ k . Then for any A, y PS ≥ A, X k Φ 2 k ≤ 4 y ≤ exp ‚ − A 2 2 y Œ 24 PS ≥ A, X k E[∆ 2 k |Y 1 , . . . Y k −1 ] ≤ y ≤ exp ‚ − A 2 2 y + 2Am 3 Œ . 25 In particular PS ≥ A ≤ exp ‚ − 2A 2 P k δ 2 k Œ 26 δ k = kD k Y k , Y ′ k k ∞ . R EMARK . Let us mention that if f has the form f Y = sup g ∈Γ gY for some finite class of functions Γ then, with obvious notations, D k y, z = sup g ∈Γ gY 1 , . . . Y k −1 , y, Y k+1 . . . Y n − sup g ∈Γ gY 1 , . . . Y k −1 , z, Y k+1 . . . Y n ≤ sup g ∈Γ {gY 1 , . . . Y k −1 , y, Y k+1 . . . Y n − gY 1 , . . . Y k −1 , z, Y k+1 . . . Y n } = sup g ∈Γ D g k y, z in particular δ k ≤ sup g ∈Γ δ g k . This is a classical argument in the theory of concentration inequalities. Proof. We shall utilize 21 and 18 with X k = E[ f Y |F k ] − E[ f Y |F k −1 ] F k = σY 1 , . . . Y k . We have already pointed out that q = 0 since X k is a martingale difference. Let us define the random variables L k = inf y E[F k y|Y 1 , . . . Y k −1 ] U k = sup y E[F k y|Y 1 , . . . Y k −1 ]. The equation L k ≤ E[ f Y |F k ] ≤ U k implies L k − E[ f Y |F k −1 ] ≤ X k ≤ U k − E[ f Y |F k −1 ] and since U k − L k = Φ k we can apply 21 with b k = Φ k and get 24. Clearly X k rewrites X k = E[∆ k |F k ] hence E[X 2 k |F k −1 ] ≤ E[∆ 2 k |F k −1 ], 〈X 〉 ≤ V , and 25 follows from 18. 763

2.2.3 Inequalities for suprema of U-statistics

Dokumen yang terkait

AN ALIS IS YU RID IS PUT USAN BE B AS DAL AM P E RKAR A TIND AK P IDA NA P E NY E RTA AN M E L AK U K A N P R AK T IK K E DO K T E RA N YA NG M E N G A K IB ATK AN M ATINYA P AS IE N ( PUT USA N N O MOR: 9 0/PID.B /2011/ PN.MD O)

0 82 16

ANALISIS FAKTOR YANGMEMPENGARUHI FERTILITAS PASANGAN USIA SUBUR DI DESA SEMBORO KECAMATAN SEMBORO KABUPATEN JEMBER TAHUN 2011

2 53 20

EFEKTIVITAS PENDIDIKAN KESEHATAN TENTANG PERTOLONGAN PERTAMA PADA KECELAKAAN (P3K) TERHADAP SIKAP MASYARAKAT DALAM PENANGANAN KORBAN KECELAKAAN LALU LINTAS (Studi Di Wilayah RT 05 RW 04 Kelurahan Sukun Kota Malang)

45 393 31

FAKTOR – FAKTOR YANG MEMPENGARUHI PENYERAPAN TENAGA KERJA INDUSTRI PENGOLAHAN BESAR DAN MENENGAH PADA TINGKAT KABUPATEN / KOTA DI JAWA TIMUR TAHUN 2006 - 2011

1 35 26

A DISCOURSE ANALYSIS ON “SPA: REGAIN BALANCE OF YOUR INNER AND OUTER BEAUTY” IN THE JAKARTA POST ON 4 MARCH 2011

9 161 13

Pengaruh kualitas aktiva produktif dan non performing financing terhadap return on asset perbankan syariah (Studi Pada 3 Bank Umum Syariah Tahun 2011 – 2014)

6 101 0

Pengaruh pemahaman fiqh muamalat mahasiswa terhadap keputusan membeli produk fashion palsu (study pada mahasiswa angkatan 2011 & 2012 prodi muamalat fakultas syariah dan hukum UIN Syarif Hidayatullah Jakarta)

0 22 0

Pendidikan Agama Islam Untuk Kelas 3 SD Kelas 3 Suyanto Suyoto 2011

4 108 178

ANALISIS NOTA KESEPAHAMAN ANTARA BANK INDONESIA, POLRI, DAN KEJAKSAAN REPUBLIK INDONESIA TAHUN 2011 SEBAGAI MEKANISME PERCEPATAN PENANGANAN TINDAK PIDANA PERBANKAN KHUSUSNYA BANK INDONESIA SEBAGAI PIHAK PELAPOR

1 17 40

KOORDINASI OTORITAS JASA KEUANGAN (OJK) DENGAN LEMBAGA PENJAMIN SIMPANAN (LPS) DAN BANK INDONESIA (BI) DALAM UPAYA PENANGANAN BANK BERMASALAH BERDASARKAN UNDANG-UNDANG RI NOMOR 21 TAHUN 2011 TENTANG OTORITAS JASA KEUANGAN

3 32 52