v = 1 v = 1 We may thus apply the Ito formula see [11] on LF

9 Linear growth + Global space case We first prove existence of weak solutions for a localized equation with regular nonlinearities. The proof is based on a compactness method: local energy estimates yield tightness of an approximating sequence of solutions. This sequence converges, on another probability space, to a limit due to the Jakubowski-Skorokhod theorem and finally, it is shown, that this limit is the desired weak solution of the localized equation 9.1. Lemma 9.1. Let µ be a finite spectral measure on R d , let m ∈ N, let ν be a Borel probability measure supported in a ball in H , let f i , g i : R d × R n → R n ×n for i ∈ {0, . . . , d}, f d+ 1 , g d+ 1 : R d × R n → R n be measurable functions such that sup ¦ | f i w, y| + |g i w, y| : |w| ≤ r, y ∈ R n , i ∈ {0, . . . , d} © ∞ sup ¨ | f d+ 1 w, y| + |g d+ 1 w, y| 1 + | y| : |w| ≤ r, y ∈ R n « ∞, sup ¨ | f i w, y 1 − f i w, y 2 | | y 1 − y 2 | : |w| ≤ r, y 1 6= y 2 ∈ R n , i ∈ {0, . . . , d + 1} « ∞ sup ¨ |g i w, y 1 − g i w, y 2 | | y 1 − y 2 | : |w| ≤ r, y 1 6= y 2 ∈ R n , i ∈ {0, . . . , d + 1} « ∞ hold for every r 0. Then there exists a completely filtered stochastic basis Ω, F , F t , P with a spatially homogeneous F t -Wiener process W with the spectral measure µ and an F t -adapted process z with continuous paths in H which is a solution of the equation u t t = A m u + 1 B m f ·, u, u t , ∇u + 1 B m g ·, u, u t , ∇u ˙ W 9.1 in the sense of Section 4 with the notation 4.1, 4.1, ν is the law of z0 and B m is the open centered ball in R d with radius m. The proof of Lemma 9.1 will be carried out in a sequence of lemmas. For, let us introduce the mappings f k : H → H and g k : H → L 2 H µ , H defined by f k

u, v = 1

B m ‚ f ·, uζ k ∗ v + P d i= 1 f i ·, uζ k ∗ u x i + f d+ 1 ·, u Œ , g k

u, v = 1

B m ‚ g ·, uζ k ∗ v + P d i= 1 g i ·, uζ k ∗ u x i + g d+ 1 ·, u Œ ξ, ξ ∈ H µ . Lemma 9.2. For every k ∈ N, there exists a completely filtered stochastic basis Ω k , F k , P k with a spatially homogeneous F k t -Wiener process W k with spectral measure µ and an F k t -adapted process z k = u k , v k with H -continuous paths such that ν is the law of z k 0 under P k and z k t = S m t z k 0 + Z t S m t −s f k z k s ds + Z t S m t −s g k z k s dW k s , t ≥ 0. Moreover, for every p ∈ [2, ∞, there exists a constant K 1 p ,l = K 1 l ,m,g, f ,p, ν,c,a such that E k sup s ∈[0,l] kz k sk 2p H ≤ K 1 p ,l , k , l ∈ N 9.2 1058 and, if q ∈ 1, ∞ and γ 0 are such that γ + 1 q 1 2 then there exists a constant K 2 q ,l = K 2 l ,m, γ,q, f ,g,a 2,m ,c, ν such that E k kv k tk 2q C γ [0,l];W −1,2 ≤ K 2 q ,l , k , l ∈ N. 9.3 Proof. The mappings f k : H → H and g k : H → L 2 H µ , H are Lipschitz on bounded sets and have at most linear growth hence there exists a completely filtered stochastic basis Ω k , F k , P k with a spatially homogeneous F k t -Wiener process W k with spectral measure µ and an F k t -adapted process z k with H -continuous paths such that ν is the law of z k 0 under P k and z k t = S m t z k 0 + Z t S m t −s f k z k s ds + Z t S m t −s g k z k s dW k s , t ≥ 0 by e.g. [11] extended in the sense of Theorem 12.1 in Chapter V.2.12 in [39] whose generalization to SPDE is possible and can be proved in the same way as in [39] since 〈G m z , z 〉 Dom I −A m 1 2 ⊕L 2 ≤ 1 2 kzk 2 Dom I −A m 1 2 ⊕L 2 , z ∈ Dom G m hence the square norm of the local solution z k 2 Dom I −A m 1 2 ⊕L 2 cannot explode in finite time and so z k is a global solution in the sense of 4.3 by the Chojnowska-Michalik theorem see [9] or Theorem 12 in [33]. By Proposition 8.1 applied on T 0, x = 0, lr = log1 + r p for p ∈ [2, ∞, F y = | y| 2 2, λ = sup w ∈R d kaφ m wk 1 2 , with the notation F T = F m , λ ,0,T and F ∞

u, v = 1

2 Z R d d X i= 1 d X l= 1 a il ◦ φ m ¬ u x i , u x l ¶ R n + |v| 2 R n + |u| 2 R n d y , there is l F T t, z k t ≤ lF T

0, z

k 0 + M T ,k t − 1 2 〈M T ,k 〉t + c 2 2 Z t pp − 1F p −2 T s, z k s 1 + F p T s, z k s kv k sk 2 L 2 B T −λ0s kg·, u k s, v k s, ∇u k sk 2 L 2 B m ∩B T −λ0s ds + c 2 2 Z t l ′ F T s, z k skg·, u k s, v k s, ∇u k sk 2 L 2 B m ∩B T −λ0s ds + Z t l ′ F T s, z k skv k sk L 2 B T −λ0s ku k sk L 2 B T −λ0s ds + Z t l ′ F T s, z k skv k sk L 2 B T −λ0s k f ·, u k s, v k s, ∇u k sk L 2 B m ∩B T −λ0s ds ≤ lF ∞ z k 0 + M T ,k t − 1 2 〈M T ,k 〉t + K Z t 1 + F 2 ∞ z k s 1 + F 2 T s, z k s ds + K Z t 1 + F ∞ z k s 1 + F T s, z k s ds 1059 for t ∈ [0, T λ ] by Lemma 3.3 where K depends only on p, c, m, a, g, f and M T ,k t = p Z t F p −1 T s, z k s 1 + F p T s, z k s ¬ v k s, g·, u k s, v k s, ∇u k s dW k s ¶ L 2 B m ∩B T −λ0s for t ∈ [0, T λ ]. Thus, letting T → ∞, we obtain l F ∞ z k t ≤ lF ∞ z k 0 + M k t − 1 2 〈M k 〉t + 2K t for t ∈ R + by the Lebesgue dominated convergence theorem and a convergence result for stochastic integrals e.g. Proposition 4.1. in [33] where M k t = p Z t F p −1 ∞ z k s 1 + F p ∞ z k s ¬ v k s, g·, u k s, v k s, ∇u k s dW k s ¶ L 2 B m , t ∈ R + , 〈M k 〉t = p 2 X l Z t F 2p −1 ∞ z k s [1 + F p ∞ z k s] 2 ¬ v k s, g·, u k s, v k s, ∇u k se l ¶ 2 L 2 B m ds ≤ p 2 c 2 Z t F 2p −1 ∞ z k s [1 + F p ∞ z k s] 2 v k s 2 L 2 B m g·,u k s, v k s, ∇u k s 2 L 2 B m ds ≤ K Z t F 2p −1 ∞ z k s [1 + F p ∞ z k s] 2 1 + F ∞ z k s 2 ds ≤ K 3 t , t ∈ R + . Hence, applying the exponential on both sides, we get sup s ∈[0,t] F p ∞ z k t ≤ e 2K t [1 + F p ∞ z k 0] sup s ∈[0,t] e M k t− 1 2 〈M k 〉t , t ∈ R + so E k sup s ∈[0,t] F p ∞ z k t ≤ e 2K t ¦ E k [1 + F p ∞ z k 0] 2 © 1 2 ¨ E k sup s ∈[0,t] e 2M k s−〈M k 〉s « 1 2 ≤ 2K 1 e 2K t ¦ E k e 2M k t−〈M k 〉t © 1 2 ≤ 2K 1 e 2K+ K3 2 t ¦ E k e 2M k t−2〈M k 〉t © 1 2 ≤ 2K 1 e 2K+ K3 2 t by the Doob maximal inequality for martingales and the Novikov criterion, where K 2 1 = E k [1 + F p ∞ z k 0] 2 = Z H [1 + F p ∞ z] 2 d ν ∞. Since F 1 2 ∞ is an equivalent norm on H , we have proved 9.2. Next, by the Chojnowska-Michalik theorem see [9] or Theorem 12 in [33] P k –Z t u k s ds ∈ Dom A m ™ = 1, t ∈ R + 1060 and v k t = v k 0 + A m Z t u k s ds + Z t f 2 k z k s ds + Z t g 2 k z k s dW k s 9.4 v k t = v k 0 + A m I 1 t + I 2 t + I 3 t almost surely for every t ∈ R + , where f 2 k and g 2 k are the second components of f k and g k , respectively, and the integrals converge in L 2 . We get that E k kv k k 2q C γ [0,l];W −1,2 ≤ 4 2q −1 h E k kv k 0k 2q L 2 + E k kA m I 1 k 2q C γ [0,l];W −1,2 i + 4 2q −1 h E k kI 2 k 2q C γ [0,l];W −1,2 + E k kI 3 k 2q C γ [0,l];W −1,2 i ≤ 4 2q −1 h E k kv k 0k 2q L 2 + c a 2,m E k kI 1 k 2q C γ [0,l];W 1,2 i + 4 2q −1 h E k kI 2 k 2q C γ [0,l];L 2 + E k kI 3 k 2q C γ [0,l];L 2 i ≤ c

a, γ,q,l, f ,g,m

Dokumen yang terkait

AN ALIS IS YU RID IS PUT USAN BE B AS DAL AM P E RKAR A TIND AK P IDA NA P E NY E RTA AN M E L AK U K A N P R AK T IK K E DO K T E RA N YA NG M E N G A K IB ATK AN M ATINYA P AS IE N ( PUT USA N N O MOR: 9 0/PID.B /2011/ PN.MD O)

0 82 16

ANALISIS FAKTOR YANGMEMPENGARUHI FERTILITAS PASANGAN USIA SUBUR DI DESA SEMBORO KECAMATAN SEMBORO KABUPATEN JEMBER TAHUN 2011

2 53 20

EFEKTIVITAS PENDIDIKAN KESEHATAN TENTANG PERTOLONGAN PERTAMA PADA KECELAKAAN (P3K) TERHADAP SIKAP MASYARAKAT DALAM PENANGANAN KORBAN KECELAKAAN LALU LINTAS (Studi Di Wilayah RT 05 RW 04 Kelurahan Sukun Kota Malang)

45 393 31

FAKTOR – FAKTOR YANG MEMPENGARUHI PENYERAPAN TENAGA KERJA INDUSTRI PENGOLAHAN BESAR DAN MENENGAH PADA TINGKAT KABUPATEN / KOTA DI JAWA TIMUR TAHUN 2006 - 2011

1 35 26

A DISCOURSE ANALYSIS ON “SPA: REGAIN BALANCE OF YOUR INNER AND OUTER BEAUTY” IN THE JAKARTA POST ON 4 MARCH 2011

9 161 13

Pengaruh kualitas aktiva produktif dan non performing financing terhadap return on asset perbankan syariah (Studi Pada 3 Bank Umum Syariah Tahun 2011 – 2014)

6 101 0

Pengaruh pemahaman fiqh muamalat mahasiswa terhadap keputusan membeli produk fashion palsu (study pada mahasiswa angkatan 2011 & 2012 prodi muamalat fakultas syariah dan hukum UIN Syarif Hidayatullah Jakarta)

0 22 0

Pendidikan Agama Islam Untuk Kelas 3 SD Kelas 3 Suyanto Suyoto 2011

4 108 178

ANALISIS NOTA KESEPAHAMAN ANTARA BANK INDONESIA, POLRI, DAN KEJAKSAAN REPUBLIK INDONESIA TAHUN 2011 SEBAGAI MEKANISME PERCEPATAN PENANGANAN TINDAK PIDANA PERBANKAN KHUSUSNYA BANK INDONESIA SEBAGAI PIHAK PELAPOR

1 17 40

KOORDINASI OTORITAS JASA KEUANGAN (OJK) DENGAN LEMBAGA PENJAMIN SIMPANAN (LPS) DAN BANK INDONESIA (BI) DALAM UPAYA PENANGANAN BANK BERMASALAH BERDASARKAN UNDANG-UNDANG RI NOMOR 21 TAHUN 2011 TENTANG OTORITAS JASA KEUANGAN

3 32 52