γ,q,l, f ,g,m

and v k t = v k 0 + A m Z t u k s ds + Z t f 2 k z k s ds + Z t g 2 k z k s dW k s 9.4 v k t = v k 0 + A m I 1 t + I 2 t + I 3 t almost surely for every t ∈ R + , where f 2 k and g 2 k are the second components of f k and g k , respectively, and the integrals converge in L 2 . We get that E k kv k k 2q C γ [0,l];W −1,2 ≤ 4 2q −1 h E k kv k 0k 2q L 2 + E k kA m I 1 k 2q C γ [0,l];W −1,2 i + 4 2q −1 h E k kI 2 k 2q C γ [0,l];W −1,2 + E k kI 3 k 2q C γ [0,l];W −1,2 i ≤ 4 2q −1 h E k kv k 0k 2q L 2 + c a 2,m E k kI 1 k 2q C γ [0,l];W 1,2 i + 4 2q −1 h E k kI 2 k 2q C γ [0,l];L 2 + E k kI 3 k 2q C γ [0,l];L 2 i ≤ c

a, γ,q,l, f ,g,m

‚ 1 + E k sup s ∈[0,t] kz k sk 2q H Œ ≤ K 2 l by the inequality 18 in the proof of Lemma 4 in [29] and 9.2. Lemma 9.3. The sequence of processes z k constructed in Lemma 9.2 is tight in the space Z = C w R + ; W 1,2 l oc × C w R + ; L 2 l oc . Proof. It holds, by the Chojnowska-Michalik theorem see [9] or Theorem 12 in [33], that u k t = u k 0 + Z t v k s ds, t ∈ R + 9.5 almost surely where the integral converges in L 2 . So, if γ ∈ 0, 1 then ku k k C γ [0,l];L 2 ≤ 1 + l sup s ∈[0,l] kz k sk H . Hence, if we fix ǫ 0, q ∈ 1, ∞ and γ 0 such that γ + 1 q 1 2 and we assume a l 2 + l – 4 l ǫ K 1 q ,l + K 2 q ,l ™ 1 2q , there is P k – sup s ∈[0,l] ku k sk W 1,2 B l + ku k sk C γ [0,l];L 2 B l a l ™ ≤ ≤ P k – sup s ∈[0,l] kz k sk H a l 2 + l ™ ≤ 2 + l a l 2q E k sup s ∈[0,l] kz k sk 2q H ≤ ǫ 4 l and P k – sup s ∈[0,l] kv k sk L 2 B l + kv k sk C γ [0,l];W −1,2 l a l ™ ≤ 1061 ≤ P k – sup s ∈[0,l] kz k sk H a l 2 ™ + P k • kv k sk C γ [0,l];W −1,2 l a l 2 ˜ ≤ 2 a l 2q – E k sup s ∈[0,l] kz k sk 2q H + E k kv k sk 2q C γ [0,l];W −1,2 ™ ≤ ǫ 4 l , the sets C 1 = ¦ h ∈ C w R + ; W 1,2 l oc : khk L ∞ 0,l;W 1,2 B l + khk C γ [0,l];L 2 B l ≤ a l © C 2 = n h ∈ C w R + ; L 2 l oc : khk L ∞ 0,l;L 2 B l + khk C γ [0,l];W −1,2 l ≤ a l o are such that C 1 × C 2 is compact in Z by Corollary B.2 and P k [z k ∈ C 1 × C 2 ] ≥ 1 − ǫ. We may now proceed to the proof of Lemma 9.1. Fixing an ONB e l in H µ , by the Jakubowski- Skorokhod theorem A.1 applied to the Z × C R + ; R dim H µ -valued sequence z k , W k e l l k , there exists • a subsequence k j , a probability space Ω, F , P with • CR + ; H -valued random variables Z j , j ∈ N, • a Z -valued random variable Z, • C R + ; R dim H µ -valued random variables β j , j ∈ N and β such that i the law of z k j , W k j e l l under P k j coincides with the law of Z j , β j under P on BCR + ; H ⊗ BC R + ; R dim H µ ii Z j , β j converges in Z × C R + ; R dim H µ to Z, β on Ω. Remark 9.4. We point out for completeness that tightness of the sequence z k , W k e l l k in Z × C R + ; R dim H µ follows from Lemma 9.3 and from the fact that all W k e l l have the same Radon law on the Polish space C R + ; R dim H µ for every k ∈ N. Consequently, the sequence W k e l l is tight in C R + ; R dim H µ . Remark 9.5. It should be also noted that the random variables Z j are Z -valued by the Jakubowski- Skorokhod theorem. However, since z k j and Z j have the same law on Z and z k j are CR + ; H - valued, we conclude that Z j may be assumed to be CR + ; H -valued satisfying the property i above without loss of generality as CR + ; H is a measurable subset of Z by Corollary A.2. Lemma 9.6. If p ∈ [2, ∞ then E sup s ∈[0,l] kZ j sk 2p H ≤ K 1 p ,l , j , l ∈ N 9.6 E sup s ∈[0,l] kZsk 2p H ≤ K 1 p ,l , j , l ∈ N 9.7 where K 1 p ,l is the same constant as in 9.2. 1062 Proof. The mapping CR + ; H → R + : z 7→ sup s ∈[0,l] kzsk 2p H is continuous hence Borel measurable and so E sup s ∈[0,l] kZ j sk 2p H = E k j sup s ∈[0,l] kz k j sk 2p H ≤ K 1 p ,l , j , l ∈ N by the property i and E sup s ∈[0,l] kZsk 2p H ≤ lim inf j →∞ E sup s ∈[0,l] kZ j sk 2p H ≤ K 1 p ,l , j , l ∈ N by the Fatou lemma and the property ii. Corollary 9.7. The process Z has weakly continuous paths in H a.s. Lemma 9.8. It holds that Ut = U 0 + Z t V s ds , t ∈ R + almost surely where the integral converges in L 2 . Proof. The mapping CR + ; H → R : z 7→ 〈ut, ϕ〉 − 〈u0, ϕ〉 − Z t 〈vs, ϕ〉 ds is continuous hence Borel measurable for every ϕ ∈ D and so 〈U j t, ϕ〉 = 〈U j 0, ϕ〉 + Z t 〈V j s, ϕ〉 ds, t ∈ R + holds almost surely for every j ∈ N by the property i and 9.5. Letting j → ∞, we get 〈Ut, ϕ〉 = 〈U0, ϕ〉 + Z t 〈V s, ϕ〉 ds, t ∈ R + P-a.s. by the property ii. The result now follows from 9.7 and density of D in L 2 . If we define the complete filtration F t = σ σ Zs, βs : s ∈ [0, t] ∪ {N ∈ F : PN = 0} , t ∈ R + then the following results. Lemma 9.9. The processes β 1 , β 2 , β 3 , . . . are independent standard F t -Wiener processes. 1063 Proof. Let us consider the sequence ϕ i from Corollary C.1, let 0 ≤ s t, J ∈ N, 0 ≤ s 1 ≤ · · · ≤ s J ≤ s , let h : R 2 J ×J × R dim H µ J → [0, 1] and h 1 : R dim H µ → [0, 1] be continuous functions and define X j = € 〈z k j s i , ϕ i 1 〉 L 2 Š i ,i 1 ≤J , W k j s 1 e l l , . . . , W k j s J e l l X j = € 〈Z j s i , ϕ i 1 〉 L 2 Š i ,i 1 ≤J , β j s 1 , . . . , β j s J X = € 〈Zs i , ϕ i 1 〉 L 2 Š i ,i 1 ≤J , βs 1 , . . . , βs J for j ∈ N. Then, for every j ∈ N, Z Ω k j h X j h 1 W k j t e l − W k j s e l l dP k j = Z Ω k j h X j dP k j Z Ω k j h 1 W k j t e l − W k j s e l l dP k j by P k j -independence of σW k j t ξ − W k j s ξ ξ∈H µ and F k j s . So, by the property i, E ¦ h X j h 1 β j t − β j s © = E h X j E h 1 β j t − β j s, j ∈ N whence E h X h 1 βt − βs = E h X E h 1 βt − βs by the property ii and we conclude that E ¦ 1 F s h 1 βt − βs © = P F s E h 1 βt − βs holds for every F s ∈ F s whenever s t, i.e. σβt − βs is P-independent from F s . Since β j 1 t − β j 1 s, . . . , β j l t − β j l s and W k j t e 1 − W k j s e 1 , . . . , W k j t e l − W k j s e l have the normal centered distribution with covariance t − sI l for every j, l ∈ N and 0 ≤ s t by the property i preceding Remark 9.4 and the fact that W k j are cylindrical Wiener processes on H µ by Section 3, we conclude that β 1 t − β 1 s, . . . , β l t − β l s has the normal centered distribution with covariance t − sI l as well, as β j → β on Ω by the property ii preceding Remark 9.4. The proof of Lemma 9.9 is thus complete. Corollary 9.10. Let e l be the previously fixed ONB in H µ . Then the cylindrical process W t ξ = X l β l t〈ξ, e l 〉 H µ , ξ ∈ H µ , t ≥ 0 is a spatially homogeneous F t -Wiener process with spectral measure µ. Lemma 9.11. Proof. Fix ϕ ∈ D and define the continuous operators d k t : CR + ; H → R : z 7→ 〈vt, ϕ〉 − 〈v0, ϕ〉 − Z t h 〈ur, A m ϕ〉 + 〈 f 2 k zr, ϕ〉 i d r D k ,l t : CR + ; H → R : z 7→ Z t 〈g 2 k zre l , ϕ〉 d r D k t : CR + ; H → R : z 7→ X l Z t 〈g 2 k zre l , ϕ〉 2 d r 1064 where f 2 k and g 2 k are the second components of f k and g k , respectively. Then, fixing 0 ≤ s t and with the notation of the proof of Lemma 9.9, E h X j n d k j t Z j − d k j s Z j o = E k j h X j n d k j t z k j − d k j s z k j o = 0 9.8 E h X j n d k j t Z j β j l t − D k j ,l t Z j − d k j s Z j β j l s + D k j ,l s Z j o = 9.9 = E k j h X j n d k j t z k j W k j t e l − D k j ,l t z k j − d k j s z k j W k j s e l + D k j ,l s z k j o = 0 E h X j n d k j t Z j 2 − D k j t Z j − d k j s Z j 2 + D k j s Z j o = 9.10 = E k j h X j n d k j t z k j 2 − D k j t z k j − d k j s z k j 2 + D k j s z k j o = 0 by the property i since, by 9.4, d k j t z k j = Z t g 2 k j z k j s dW k j s , t ∈ R + is an L 2 Ω k j -integrable martingale in L 2 by 9.2 and Lemma 3.3, and the integrals expectations in 9.8-9.10 converge by 9.2 and 9.6. Since sup j ∈N E h |d k j r Z j | q + |D k j ,l r Z j | q + |D k j r Z j | q i ∞ for every r ∈ R + , l ∈ N and q 0 by 9.6, we get E h X d t − d s = 0 E h X ¨ d t β l t − d s β l s − Z t s ¬ g 2 Zre l , ϕ ¶ d r « = 0 E h X d t 2 − d s 2 − X l Z t s ¬ g 2 Zre l , ϕ ¶ 2 d r = 0 by the property ii where d t = 〈V t, ϕ〉 − 〈V 0, ϕ〉 − Z t ” 〈Ur, A m ϕ〉 + 〈 f 2 Zr, ϕ〉 — d r f 2 z = 1 B m f ·, u, v, ∇u g 2 z = 1 B m g ·, u, v, ∇u. In particular, the processes d , d · β l − Z · ¬ g 2 Zre l , ϕ ¶ d r , d 2 − X l Z · ¬ g 2 Zre l , ϕ ¶ 2 d r are F t -martingales hence the quadratic variation ® d − Z · ¬ g 2 Zr dW r , ϕ ¶ ¸ = 0 1065 and so 〈V t, ϕ〉 = 〈V 0, ϕ〉 + Z t ” 〈Ur, A m ϕ〉 + 〈 f 2 Zr, ϕ〉 — d r + Z t ¬ g 2 Zr dW r , ϕ ¶ . Thus Z is a solution of 9.1. Moreover, by the Chojnowska-Michalik theorem see [9] or Theorem 13 in [33], Zt = S m Z 0 + Z t S m t −s ‚ 1 B m f Zs Œ ds + Z t S m t −s ‚ 1 B m gZs Œ dW s holds a.s. for every t ∈ R + , hence paths of Z are H -continuous almost surely. 10 General growth + Local space case In this section, we use the existence result for the localized equation 9.1 and mimic the com- pactness method of the previous section based on the local energy estimates, tightness of an approximating sequence of solutions, convergence to a limit on another probability space due to the Jakubowski-Skorokhod theorem and final identification of the limit with a solution. The construction-approximation procedure is, however, much more refined this time. Lemma 10.1. Let κ ∈ R + . Then there exists a constant ρ ∈ R + depending only on κ and c see Section 2 such that the following holds: If f i , g i : R d × R n → R n ×n for i ∈ {0, . . . , d} and f d+ 1 , g d+ 1 : R d × R n → R n are measurable functions satisfying the assumptions of Lemma 9.1, m ∈ N, z is an H -continuous solution of 9.1, L : R + → R + is a continuous nondecreasing function in C 2 0, ∞ satisfying 5.4 with κ, if T 0 and x ∈ R d satisfy Bx , T ⊆ B m , if F : R d × R n → R + satisfies the assumptions a-c in Proposition 8.1 and, for every y ∈ R n , there is | f w, y| 2 + |g w, y| 2 ≤ κ 10.1 n X j= 1 n X k= 1      a − 1 2 w     f 1 jk w, y .. . f d jk w, y     2 R d + a − 1 2 w     g 1 jk w, y .. . g d jk w, y     2 R d      ≤ κ 10.2 |g d+ 1 w, y| 2 + |∇ y F w , y + f d+ 1 w, y| 2 ≤ κFw, y 10.3 for a.e. w ∈ Bx, T , if λ satisfies 5.3 and F = F λ,x,T is the conic energy function for F defined as in 2.2 then E ¨ 1 Ω sup r ∈[0,t] L Fr, zr « ≤ 4e ρ t E ¦ 1 Ω L F0, z © 10.4 holds for every t ∈ [0, T λ] and every Ω ∈ F . Proof. Define l ǫ r = logǫ + Lǫ + r for r ∈ R + and ǫ 0, put et = F m , λ,x,T t, zt for t ∈ [0, T λ] and write shortly f z = f ·, u, v, ∇u, gz = g ·, u, v, ∇u for z = u , v ∈ H l oc . 1066 Then, by Proposition 8.1, l ǫ et ≤ l ǫ e0 + M ǫ t − 1 2 〈M ǫ 〉t + 1 2 X l Z t L ′′ ǫ + es ǫ + Lǫ + es 〈vs, gzse l 〉 2 L 2 Bx,T −λs ds + c 2 2 X l Z t L ′ ǫ + es ǫ + Lǫ + es kgzsk 2 L 2 Bx,T −λs ds + Z t L ′ ǫ + es ǫ + Lǫ + es 〈vs, ∇ y F ·, us + f zs〉 L 2 Bx,T −λs ds ≤ l ǫ e0 + ρκt + M ǫ t − 1 2 〈M ǫ 〉t, t ∈ [0, T λ] almost surely by 8.4 and Lemma 3.3 where ρκ = 12c 2 κ + 4κ + 1κ and M ǫ t = Z t L ′ ǫ + es ǫ + Lǫ + es 〈vs, gzs dW s 〉 L 2 Bx,T −λs , t ∈ [0, T λ] as, for every s ∈ [0, T λ], kgzsk 2 L 2 Bx,T −λs ≤ 3 g ·, usvs 2 L 2 Bx,T −λs + 3 g d+ 1 ·, us 2 L 2 Bx,T −λs + 3 d X i= 1 g i ·, usu x i s 2 L 2 Bx,T −λs ≤ 12κes and, analogously, ∇ y F ·, us + f zs 2 L 2 Bx,T −λs ≤ 12κes. Hence, almost surely, L ǫ + et ≤ e ρκt [ǫ + Lǫ + e0] e M ǫ t− 1 2 〈M ǫ 〉t , t ∈ [0, T λ]. Since 〈M ǫ 〉t = X l Z t – L ′ ǫ + es ǫ + Lǫ + es ™ 2 〈vs, gzse l 〉 2 L 2 Bx,T −λs ds ≤ 24κ 3 c 2 t , t ∈ [0, T λ], there is E sup s ∈[0,t] ¦ 1 Ω ∩[e0≤δ] L ǫ + es © ≤ e ρκt E sup s ∈[0,t] Y 1,1 s 10.5 ≤ e ρκt E sup s ∈[0,t] [Y 1 2 , 1 2 s] 2 ≤ 4e ρκt E [Y 1 2 , 1 2 t] 2 = 4e ρκt E n Y 1,1 te 1 4 〈M ǫ 〉t o ≤ 4e [6κ 3 c 2 +ρκ]t E Y 1,1 t = 4e [6κ 3 c 2 +ρκ]t E ¦ 1 Ω ∩[e0≤δ] [ǫ + Lǫ + e0] © 1067 by the Doob maximal inequality for submartingales where Y α,β t = 1 Ω ∩[e0≤δ] [ǫ + Lǫ + e0] α e β M ǫ t− β2 2 〈M ǫ 〉t , t ∈ [0, T ] is a martingale for every α, β 0 by the Novikov criterion. Now, we get the claim by letting ǫ ↓ 0 Fatou’s lemma on the left hand side and Lebesgue’s dominated convergence theorem on the right hand side and δ ↑ ∞ Levi’s theorem on the left hand side in 10.5. With the notation λ T defined in 2.3, given r 0, let T r be the smallest radius of the base of a backward cone {t, x ∈ R + × R d : |x| + tλ T ≤ T } that contains houses the cylinder [0, r] × B r and, given m ∈ N, let r m be the radius of the largest cylinder [0, r] × B r for which the radius of the housing backward cone {t, x ∈ R + × R d : |x| + tλ T r ≤ T r } is not larger than m, i.e. T r ≤ m. We can define these radii by T r = inf T 0 : T 1 + λ T ≥ r , r m = sup {r 0 : T r ≤ m}. 10.6 Remark 10.2. Observe that T r ∞ for every r 0 and r m ∈ 0, m] satisfy r m ↑ ∞ by 2.1. Given r 0, let use define extension operators E r ϕx = ϕx, |x| r E r ϕx = −η r xϕP r x, |x| r 10.7 E ∗ r ψx = ψx − r 2d |x| 2d η r P r xψP r x, |x| r for ϕ : B r → R n and ψ : R d → R n where η r x = ηxr and η is a smooth [0, 1]-valued function such that ηx = 1 if |x| ≤ 1 and ηx = 0 if |x| ≥ 2 and P r x = r 2 |x| −2 x . Lemma 10.3. For every p ∈ [1, ∞], the operator • E r maps L p B r continuously to L p R d , • E ∗ r maps L p R d continuously to L p B r , • E ∗ r maps W 1,2 R d continuously to W 1,2 B r , kE r k L L p B r ,L p + kE ∗ r k L L p ,L p B r ≤ c d ,p , kE ∗ r k L W 1,2 ,W 1,2 B r ≤ c d 1 + 1 r and Z R d E r ϕ, ψ R n d x = Z B r ¬ ϕ, E ∗ r ψ ¶ R n d x hold for every ϕ ∈ L p B r , ψ ∈ L q R d whenever p, q ∈ [1, ∞] are Hölder conjugate exponents. 1068 Lemma 10.4. Let κ ∈ R + , R 0, δ 0, d ∗ = ” d 2 — + 1, γ 0, p ∈ 1, ∞ such that γ + 2 p 1 2 . Then there exists a constant ˜ ρ ∈ R + depending only on R, d, p, κ, r , δ, γ and c see Section 2 and 10.6 such that the following holds. If f i , g i : R d × R n → R n ×n and f d+ 1 , g d+ 1 : R d × R n → R n are measurable functions satisfying the assumptions of Lemma 9.1, m ∈ N, z is an H -continuous solution of 9.1, F : R d × R n → R + satisfies the assumptions a-c in Proposition 8.1 and, for every y ∈ R n , the inequalities 10.1-10.3 hold for a.e. w ∈ B T R ∧rm . If, for every y ∈ R n , | f d+ 1 w, y| ≤ κFw, y for a.e. w ∈ B r m ∧R 10.8 and F r = F λ Tr ,0,T r is the conic energy function defined as in 2.2 for the function F then E 1 [F rm∧R 0,z0≤δ] kE r m v · ∧ r m k p C γ [0,R],W −d∗,2 R ≤ ˜ ρ where the space W −d ∗ ,2 R is defined in Appendix B. Proof. There is kE r m h k W −d∗,2 R ≤ c 1 khk L 2 B rm∧R , h ∈ L 2 l oc kE r m h k W −d∗,2 R ≤ c 2 khk L 1 B rm∧R , h ∈ L 1 l oc kE r m A m h k 2 W −d∗,2 R ≤ c 2 3 Q r m ∧R h, h, h ∈ W 2,2 l oc 10.9 where c 1 = 1, c 2 = k ⊆ k L W d∗,2 ,L ∞ , c 3 = λ R if R ≤ r, c 1 = kE r k L L 2 B r ,L 2 , c 2 = k ⊆ k L W d∗,2 ,L ∞ kE ∗ r k L L ∞ ,L ∞ B r , c 3 = λ r kE ∗ r k L W 1,2 ;W 1,2 B r if R r and Q δ h 1 , h 2 = d X i= 1 d X j= 1 Z B δ a i j ® ∂ h 1 ∂ x i , ∂ h 2 ∂ x j ¸ R n d w . Observe that max {c 1 , c 2 , c 3 } can be dominated by a constant c that depends only on d, R and r by Lemma 10.3. Let us prove just the third inequality in case R r as the other cases are straightfor- ward. For let ϕ ∈ W d ∗ ,2 R . Then E r A m h , ϕ = Z R d E r A m h , ϕ R n d w = Z B r A m h , ψ R n d w = d X i= 1 d X j= 1 Z B r – ∂ ∂ x j ¨ a i j ∂ h ∂ x i , ψ R n « − a i j ∂ h ∂ x i , ∂ ψ ∂ x i R n ™ d w = − d X i= 1 d X j= 1 Z B r a i j ∂ h ∂ x i , ∂ ψ ∂ x i R n d w 1069 where ψ = E ∗ r ϕ ∈ W 1,2 B r by Lemma 10.3. So | E r A m h , ϕ | ≤ λ r Q 1 2 r h, hkψk W 1,2 B r ≤ λ r Q 1 2 r h, hkE ∗ r k L W 1,2 ,W 1,2 B r kϕk W 1,2 ≤ c 3 kϕk W d∗,2 . If we define the processes I 1 t = v 0, I 2 t = R t us ds , I 3 t = R t 1 B m f ·, zs, ∇us ds, I 4 t = R t 1 B m g ·, zs, ∇us dW s where the integral I 2 converges in W 1,2 and the integrals I 3 , I 4 converge in L 2 then P [I 2 t ∈ W 2,2 ] = 1, P [vt = I 1 t + A m I 2 t + I 3 t + I 4 t] = 1, t ∈ R + by the Chojnowska-Michalik theorem see [9] or Theorem 13 in [33]. Since E r m ◦ A m can be extended to a linear continuous operator from W 1,2 to W −d ∗ ,2 R by 10.9, E r m vt = E r m I 1 t + E r m A m I 2 t + E r m I 3 t + E r m I 4 t, t ∈ R + in W −d ∗ ,2 R a.s. Since k f ·, zt, ∇utk L 1 B rm∧R ≤ c d R d 2 f ·, utvt + d X i= 1 f i ·, utu x i t L 2 B rm∧R + k f d+ 1 ·, utk L 1 B rm∧R ≤ c d R d 2 1 + 2 1 2 κ 1 2 F 1 2 r m ∧R t, zt + κF

Dokumen yang terkait

AN ALIS IS YU RID IS PUT USAN BE B AS DAL AM P E RKAR A TIND AK P IDA NA P E NY E RTA AN M E L AK U K A N P R AK T IK K E DO K T E RA N YA NG M E N G A K IB ATK AN M ATINYA P AS IE N ( PUT USA N N O MOR: 9 0/PID.B /2011/ PN.MD O)

0 82 16

ANALISIS FAKTOR YANGMEMPENGARUHI FERTILITAS PASANGAN USIA SUBUR DI DESA SEMBORO KECAMATAN SEMBORO KABUPATEN JEMBER TAHUN 2011

2 53 20

EFEKTIVITAS PENDIDIKAN KESEHATAN TENTANG PERTOLONGAN PERTAMA PADA KECELAKAAN (P3K) TERHADAP SIKAP MASYARAKAT DALAM PENANGANAN KORBAN KECELAKAAN LALU LINTAS (Studi Di Wilayah RT 05 RW 04 Kelurahan Sukun Kota Malang)

45 393 31

FAKTOR – FAKTOR YANG MEMPENGARUHI PENYERAPAN TENAGA KERJA INDUSTRI PENGOLAHAN BESAR DAN MENENGAH PADA TINGKAT KABUPATEN / KOTA DI JAWA TIMUR TAHUN 2006 - 2011

1 35 26

A DISCOURSE ANALYSIS ON “SPA: REGAIN BALANCE OF YOUR INNER AND OUTER BEAUTY” IN THE JAKARTA POST ON 4 MARCH 2011

9 161 13

Pengaruh kualitas aktiva produktif dan non performing financing terhadap return on asset perbankan syariah (Studi Pada 3 Bank Umum Syariah Tahun 2011 – 2014)

6 101 0

Pengaruh pemahaman fiqh muamalat mahasiswa terhadap keputusan membeli produk fashion palsu (study pada mahasiswa angkatan 2011 & 2012 prodi muamalat fakultas syariah dan hukum UIN Syarif Hidayatullah Jakarta)

0 22 0

Pendidikan Agama Islam Untuk Kelas 3 SD Kelas 3 Suyanto Suyoto 2011

4 108 178

ANALISIS NOTA KESEPAHAMAN ANTARA BANK INDONESIA, POLRI, DAN KEJAKSAAN REPUBLIK INDONESIA TAHUN 2011 SEBAGAI MEKANISME PERCEPATAN PENANGANAN TINDAK PIDANA PERBANKAN KHUSUSNYA BANK INDONESIA SEBAGAI PIHAK PELAPOR

1 17 40

KOORDINASI OTORITAS JASA KEUANGAN (OJK) DENGAN LEMBAGA PENJAMIN SIMPANAN (LPS) DAN BANK INDONESIA (BI) DALAM UPAYA PENANGANAN BANK BERMASALAH BERDASARKAN UNDANG-UNDANG RI NOMOR 21 TAHUN 2011 TENTANG OTORITAS JASA KEUANGAN

3 32 52