x us define the processes Z
m
t = U
m
t, V
m
t := E
r
m
u
m
t ∧ r
m
, E
r
m
v
m
t ∧ r
m
, t
∈ R
+
where r
m
and E
r
m
were defined in 10.6 and 10.7, xi it hold that
Z
B
R
sup {F
∗
w, y : | y| ≤ R} dw ∞, R
0, 11.4
xii given r 0, there exist α
R
= α
r ,R
for R 0 such that lim
R →∞
α
R
= 0 and | f
d+ 1
m
w, y| ≤ α
R
F
m
w, y, | y| ≥ R
11.5 holds for every m
∈ N and almost every w ∈ B
r
. Remark
11.1. Observe that 11.1 implies P
m
[Z
m
0 ∈ ·] → Θ weakly on H
l oc
. Indeed, let E
r
: H
r
→ H be a continuous linear extension operator, i.e. E
r
z = z a.e. on B
r
, and let ϕ : H
l oc
→ [0, 1] be a uniformly continuous function. Then, for every
ǫ 0, there is r 0 such that |ϕz − ϕE
r
π
r
z| ≤ ǫ, z
∈ H
l oc
. Thus
lim
m →∞
Z
H
l oc
ϕZ
m
0 dP
m
= Z
H
l oc
ϕ dΘ and the claim follows from Theorem 2.1 in [1].
Remark 11.2. Observe also that, given R
0, the real valued sequence kF
m
·, U
m
0k
L
1
B
R
is tight in R
+
. Indeed, there is P
m
kF
m
·, U
m
0k
L
1
B
R
δ
= P
m
kF
m
·, π
R
u
m
0k
L
1
B
R
δ
≤ kP
m
π
R
z
m
0 ∈ · − Θ
π
R
∈ · k
+ Θ
¦ u, v : kF
m
·, uk
L
1
B
R
δ ©
≤ ǫ
R ,m
+ Θ ¦
u, v : kF
∗
·, uk
L
1
B
R
δ ©
for m ∈ N such that r
m
≥ R where ǫ
R ,m
→ 0 by 11.1. Tightness follows from 11.2.
11.2 Tightness
Lemma 11.3. The sequence of processes Z
m
is tight in Z = C
w
R
+
, W
1,2 l oc
× C
w
R
+
, L
2 l oc
. Proof.
Let ǫ ∈ 0, 1, let us define
˜ F
m
w, y = F
m
w, y + | y|
2
2, ˜
F
∗
w, y = F
∗
w, y + | y|
2
2 and consider their conic energy functions
˜ F
m ,k
= ˜ F
m λ
Tk∧rm
,0,T
k ∧rm
, ˜
F
∗ k
= ˜ F
∗ 0,0,T
k
1073
for k ∈ N defined as in 2.2 with the notation 2.3 and 10.6. Let also p ∈ 1, ∞ and γ ∈ 0, 1
satisfy γ +
2 p
1 2
and let d
∗
=
d 2
+ 1. Since
|g
d+ 1
m
w, y|
2
+ |∇
y
˜ F
m
w, y + g
d+ 1
m
w, y|
2
= |g
d+ 1
m
w, y|
2
+ |∇
y
F
m
w, y + y + g
d+ 1
m
w, y|
2
≤ 2|g
d+ 1
m
w, y|
2
+ 2|∇
y
F
m
w, y + g
d+ 1
m
w, y|
2
+ 2| y|
2
≤ 2κ + 4 ˜ F
m
w, y the assumptions 5.4-10.3, 10.8 are satisfied for
κ, ˜ F
m
for every y ∈ R
n
and a.e. w ∈ B
m
for the constant ˜k which depends on
κ and p, and so Lemma 10.1 and Lemma 10.4 applied on ˜ F
m
and Lx = x
p 2
yield, for every δ 0,
Z
[˜ F
m ,k
0,z
m
0≤δ]
sup
t ∈[0,k∧r
m
]
˜ F
p 2
m ,k
t, z
m
t dP
m
≤ 4e
ρk
Z
[˜ F
m ,k
0,z
m
0≤δ]
˜ F
p 2
m ,k
0, z
m
0 dP
m
≤ 4e
ρk
δ
p 2
where ρ = ρ
c,
κ,p
so Z
[˜ F
m ,k
0,z
m
0≤δ]
¨ sup
t ∈[0,k]
kU
m
tk
p W
1,2
B
k
+ sup
t ∈[0,k]
kV
m
tk
p L
2
B
k
« dP
m
≤ C
k ,
δ
11.6 as
sup
t ∈[0,k]
kU
m
tk
W
1,2
B
k
≤ max {1, ˜ α
k
} sup
t ∈[0,k∧r
m
]
ku
m
tk
W
1,2
B
k ∧rm
, sup
t ∈[0,k]
kV
m
tk
L
2
B
k
≤ max {1, ˜ α
k
} sup
t ∈[0,k∧r
m
]
kv
m
tk
L
2
B
k ∧rm
, ku
m
tk
2 W
1,2
B
k ∧rm
+ kv
m
tk
2 L
2
B
k ∧rm
≤ 2 max {α
k
, 1 }˜F
m ,k
t, z
m
t, t
∈ [0, k ∧ r
m
] where
α
k
= sup
w ∈B
Tk
ka
−1
wk, ˜
α
k
= max {kE
r
m
k
L L
2
B
rm
,L
2
R
d
, kE
r
m
k
L W
1,2
B
rm
,W
1,2
R
d
: m ∈ N, r
m
≤ k}, and
Z
[˜ F
m ,k
0,z
m
0≤δ]
kU
m
k
p C
γ
[0,k],L
2
B
k
+ kV
m
k
p C
γ
[0,k],W
−d∗,2 k
dP
m
≤ C
k ,
δ
11.7 by Lemma 10.4 for some C
k ,
δ
∈ R
+
depending also on c, a, p, d, γ, r
j j
∈N
, E
r
j
j ∈N
, E
r
j
j ∈N
and κ
since kU
m
k
C
γ
[0,k];L
2
B
k
≤ max {1, ˜ β
k
}
ku
m
0k
L
2
B
k ∧rm
+ 2k sup
t ∈[0,k∧r
m
]
kv
m
tk
L
2
B
k ∧rm
where ˜
β
k
= max {kE
r
m
k
L L
2
B
rm
,L
2
R
d
: m ∈ N, r
m
≤ k}.
1074
Since P
m
˜
F
m ,k
0, z
m
0 δ
= P
m
˜
F
m ,k
0, π
T
k
z
m
0 δ
≤ Θ
˜ F
m ,k
0, π
T
k
δ
+ sup
A BH
Tk
P
m
π
T
k
z
m
0 ∈ A
− Θ
π
T
k
∈ A
= ǫ
m ,k
+ Θ
˜ F
m ,k
0, · δ
≤ ǫ
m ,k
+ Θ
˜ F
∗ k
0, · δ
holds for every m, k ∈ N and δ where the norms are in the total variation of measures on H
T
k
, taking 11.1 and 11.2 into account, we can find
δ
k
0 and a
k
0 so that P
m
˜
F
m ,k
0, z
m
0 δ
k
≤
ǫ 3
· 4
k
, a
k
≥
6
· 4
k
· 2
p
· C
k ,
δ
k
ǫ
1 p
holds for every m, k ∈ N. Then
P
m
sup
t ∈[0,k]
kU
m
k
W
1,2
B
k
+ kU
m
k
C
γ
[0,k];L
2
B
k
a
k
≤ P
m
˜
F
m ,k
0, z
m
0 δ
k
+ P
m
˜
F
m ,k
0, z
m
0 ≤ δ
k
, sup
t ∈[0,k]
kU
m
k
W
1,2
B
k
a
k
2
+ P
m
˜
F
m ,k
0, z
m
0 ≤ δ
k
, kU
m
k
C
γ
[0,k];L
2
B
k
a
k
2
≤ ǫ
3 · 4
k
+ 2
p
a
p k
Z
[˜ F
m ,k
0,z
m
0≤δ
k
]
¨ sup
t ∈[0,k]
kU
m
k
p W
1,2
B
k
+ kU
m
k
p C
γ
[0,k];L
2
B
k
« dP
m
≤ ǫ
4
k
by 11.6 and 11.7, and analogously P
m
sup
t ∈[0,k]
kV
m
k
L
2
B
k
+ kV
m
k
C
γ
[0,k];W
−d∗,2 k
a
k
≤
ǫ 4
k
. If
K
1
= ¦
h ∈ C
w
R
+
; W
1,2 l oc
: khk
L
∞
0,k;W
1,2
B
k
+ khk
C
γ
[0,k];L
2
B
k
≤ a
k
, k ∈ N
© K
2
= §
h ∈ C
w
R
+
; L
2 l oc
: khk
L
∞
0,k;L
2
B
k
+ khk
C
γ
[0,k];W
−d∗,2 k
≤ a
k
, k ∈ N
ª
then K
1
× K
2
is compact in Z by Corollary B.1 and
P
m
Z
m
∈ K
1
× K
2
1 − ǫ, m
∈ N.
1075
11.3 Skorokhod representation