Tightness We may thus apply the Ito formula see [11] on LF

x us define the processes Z m t = U m t, V m t := E r m u m t ∧ r m , E r m v m t ∧ r m , t ∈ R + where r m and E r m were defined in 10.6 and 10.7, xi it hold that Z B R sup {F ∗ w, y : | y| ≤ R} dw ∞, R 0, 11.4 xii given r 0, there exist α R = α r ,R for R 0 such that lim R →∞ α R = 0 and | f d+ 1 m w, y| ≤ α R F m w, y, | y| ≥ R 11.5 holds for every m ∈ N and almost every w ∈ B r . Remark 11.1. Observe that 11.1 implies P m [Z m 0 ∈ ·] → Θ weakly on H l oc . Indeed, let E r : H r → H be a continuous linear extension operator, i.e. E r z = z a.e. on B r , and let ϕ : H l oc → [0, 1] be a uniformly continuous function. Then, for every ǫ 0, there is r 0 such that |ϕz − ϕE r π r z| ≤ ǫ, z ∈ H l oc . Thus lim m →∞ Z H l oc ϕZ m 0 dP m = Z H l oc ϕ dΘ and the claim follows from Theorem 2.1 in [1]. Remark 11.2. Observe also that, given R 0, the real valued sequence kF m ·, U m 0k L 1 B R is tight in R + . Indeed, there is P m ” kF m ·, U m 0k L 1 B R δ — = P m ” kF m ·, π R u m 0k L 1 B R δ — ≤ kP m π R z m 0 ∈ · − Θ π R ∈ · k + Θ ¦ u, v : kF m ·, uk L 1 B R δ © ≤ ǫ R ,m + Θ ¦ u, v : kF ∗ ·, uk L 1 B R δ © for m ∈ N such that r m ≥ R where ǫ R ,m → 0 by 11.1. Tightness follows from 11.2.

11.2 Tightness

Lemma 11.3. The sequence of processes Z m is tight in Z = C w R + , W 1,2 l oc × C w R + , L 2 l oc . Proof. Let ǫ ∈ 0, 1, let us define ˜ F m w, y = F m w, y + | y| 2 2, ˜ F ∗ w, y = F ∗ w, y + | y| 2 2 and consider their conic energy functions ˜ F m ,k = ˜ F m λ Tk∧rm ,0,T k ∧rm , ˜ F ∗ k = ˜ F ∗ 0,0,T k 1073 for k ∈ N defined as in 2.2 with the notation 2.3 and 10.6. Let also p ∈ 1, ∞ and γ ∈ 0, 1 satisfy γ + 2 p 1 2 and let d ∗ = ” d 2 — + 1. Since |g d+ 1 m w, y| 2 + |∇ y ˜ F m w, y + g d+ 1 m w, y| 2 = |g d+ 1 m w, y| 2 + |∇ y F m w, y + y + g d+ 1 m w, y| 2 ≤ 2|g d+ 1 m w, y| 2 + 2|∇ y F m w, y + g d+ 1 m w, y| 2 + 2| y| 2 ≤ 2κ + 4 ˜ F m w, y the assumptions 5.4-10.3, 10.8 are satisfied for κ, ˜ F m for every y ∈ R n and a.e. w ∈ B m for the constant ˜k which depends on κ and p, and so Lemma 10.1 and Lemma 10.4 applied on ˜ F m and Lx = x p 2 yield, for every δ 0, Z [˜ F m ,k

0,z

m 0≤δ] sup t ∈[0,k∧r m ] ˜ F p 2 m ,k t, z m t dP m ≤ 4e ρk Z [˜ F m ,k

0,z

m 0≤δ] ˜ F p 2 m ,k

0, z

m 0 dP m ≤ 4e ρk δ p 2 where ρ = ρ c, κ,p so Z [˜ F m ,k

0,z

m 0≤δ] ¨ sup t ∈[0,k] kU m tk p W 1,2 B k + sup t ∈[0,k] kV m tk p L 2 B k « dP m ≤ C k , δ 11.6 as sup t ∈[0,k] kU m tk W 1,2 B k ≤ max {1, ˜ α k } sup t ∈[0,k∧r m ] ku m tk W 1,2 B k ∧rm , sup t ∈[0,k] kV m tk L 2 B k ≤ max {1, ˜ α k } sup t ∈[0,k∧r m ] kv m tk L 2 B k ∧rm , ku m tk 2 W 1,2 B k ∧rm + kv m tk 2 L 2 B k ∧rm ≤ 2 max {α k , 1 }˜F m ,k t, z m t, t ∈ [0, k ∧ r m ] where α k = sup w ∈B Tk ka −1 wk, ˜ α k = max {kE r m k L L 2 B rm ,L 2 R d , kE r m k L W 1,2 B rm ,W 1,2 R d : m ∈ N, r m ≤ k}, and Z [˜ F m ,k

0,z

m 0≤δ] kU m k p C γ [0,k],L 2 B k + kV m k p C γ [0,k],W −d∗,2 k dP m ≤ C k , δ 11.7 by Lemma 10.4 for some C k , δ ∈ R + depending also on c, a, p, d, γ, r j j ∈N , E r j j ∈N , E r j j ∈N and κ since kU m k C γ [0,k];L 2 B k ≤ max {1, ˜ β k }  ku m 0k L 2 B k ∧rm + 2k sup t ∈[0,k∧r m ] kv m tk L 2 B k ∧rm   where ˜ β k = max {kE r m k L L 2 B rm ,L 2 R d : m ∈ N, r m ≤ k}. 1074 Since P m ” ˜ F m ,k

0, z

m 0 δ — = P m ” ˜ F m ,k 0, π T k z m 0 δ — ≤ Θ ” ˜ F m ,k 0, π T k δ — + sup A BH Tk P m ” π T k z m 0 ∈ A — − Θ ” π T k ∈ A — = ǫ m ,k + Θ ” ˜ F m ,k 0, · δ — ≤ ǫ m ,k + Θ ” ˜ F ∗ k 0, · δ — holds for every m, k ∈ N and δ where the norms are in the total variation of measures on H T k , taking 11.1 and 11.2 into account, we can find δ k 0 and a k 0 so that P m ” ˜ F m ,k

0, z

m 0 δ k — ≤ ǫ 3 · 4 k , a k ≥   6 · 4 k · 2 p · C k , δ k ǫ   1 p holds for every m, k ∈ N. Then P m – sup t ∈[0,k] kU m k W 1,2 B k + kU m k C γ [0,k];L 2 B k a k ™ ≤ P m ” ˜ F m ,k

0, z

m 0 δ k — + P m – ˜ F m ,k

0, z

m 0 ≤ δ k , sup t ∈[0,k] kU m k W 1,2 B k a k 2 ™ + P m • ˜ F m ,k

0, z

m 0 ≤ δ k , kU m k C γ [0,k];L 2 B k a k 2 ˜ ≤ ǫ 3 · 4 k + 2 p a p k Z [˜ F m ,k

0,z

m 0≤δ k ] ¨ sup t ∈[0,k] kU m k p W 1,2 B k + kU m k p C γ [0,k];L 2 B k « dP m ≤ ǫ 4 k by 11.6 and 11.7, and analogously P m – sup t ∈[0,k] kV m k L 2 B k + kV m k C γ [0,k];W −d∗,2 k a k ™ ≤ ǫ 4 k . If K 1 = ¦ h ∈ C w R + ; W 1,2 l oc : khk L ∞ 0,k;W 1,2 B k + khk C γ [0,k];L 2 B k ≤ a k , k ∈ N © K 2 = § h ∈ C w R + ; L 2 l oc : khk L ∞ 0,k;L 2 B k + khk C γ [0,k];W −d∗,2 k ≤ a k , k ∈ N ª then K 1 × K 2 is compact in Z by Corollary B.1 and P m Z m ∈ K 1 × K 2 1 − ǫ, m ∈ N. 1075

11.3 Skorokhod representation

Dokumen yang terkait

AN ALIS IS YU RID IS PUT USAN BE B AS DAL AM P E RKAR A TIND AK P IDA NA P E NY E RTA AN M E L AK U K A N P R AK T IK K E DO K T E RA N YA NG M E N G A K IB ATK AN M ATINYA P AS IE N ( PUT USA N N O MOR: 9 0/PID.B /2011/ PN.MD O)

0 82 16

ANALISIS FAKTOR YANGMEMPENGARUHI FERTILITAS PASANGAN USIA SUBUR DI DESA SEMBORO KECAMATAN SEMBORO KABUPATEN JEMBER TAHUN 2011

2 53 20

EFEKTIVITAS PENDIDIKAN KESEHATAN TENTANG PERTOLONGAN PERTAMA PADA KECELAKAAN (P3K) TERHADAP SIKAP MASYARAKAT DALAM PENANGANAN KORBAN KECELAKAAN LALU LINTAS (Studi Di Wilayah RT 05 RW 04 Kelurahan Sukun Kota Malang)

45 393 31

FAKTOR – FAKTOR YANG MEMPENGARUHI PENYERAPAN TENAGA KERJA INDUSTRI PENGOLAHAN BESAR DAN MENENGAH PADA TINGKAT KABUPATEN / KOTA DI JAWA TIMUR TAHUN 2006 - 2011

1 35 26

A DISCOURSE ANALYSIS ON “SPA: REGAIN BALANCE OF YOUR INNER AND OUTER BEAUTY” IN THE JAKARTA POST ON 4 MARCH 2011

9 161 13

Pengaruh kualitas aktiva produktif dan non performing financing terhadap return on asset perbankan syariah (Studi Pada 3 Bank Umum Syariah Tahun 2011 – 2014)

6 101 0

Pengaruh pemahaman fiqh muamalat mahasiswa terhadap keputusan membeli produk fashion palsu (study pada mahasiswa angkatan 2011 & 2012 prodi muamalat fakultas syariah dan hukum UIN Syarif Hidayatullah Jakarta)

0 22 0

Pendidikan Agama Islam Untuk Kelas 3 SD Kelas 3 Suyanto Suyoto 2011

4 108 178

ANALISIS NOTA KESEPAHAMAN ANTARA BANK INDONESIA, POLRI, DAN KEJAKSAAN REPUBLIK INDONESIA TAHUN 2011 SEBAGAI MEKANISME PERCEPATAN PENANGANAN TINDAK PIDANA PERBANKAN KHUSUSNYA BANK INDONESIA SEBAGAI PIHAK PELAPOR

1 17 40

KOORDINASI OTORITAS JASA KEUANGAN (OJK) DENGAN LEMBAGA PENJAMIN SIMPANAN (LPS) DAN BANK INDONESIA (BI) DALAM UPAYA PENANGANAN BANK BERMASALAH BERDASARKAN UNDANG-UNDANG RI NOMOR 21 TAHUN 2011 TENTANG OTORITAS JASA KEUANGAN

3 32 52