Delayed controlled paths 86-140, by establishing an

3 The delay equation In this section, we make a first step towards the solution of the delay equation d y t = σ y t , y t −r 1 , . . . , y t −r k d x t , t ∈ [0, T ], y t = ξ t , t ∈ [−r k , 0], 14 where x is a R d -valued γ-Hölder continuous function with γ 1 3 , the function σ ∈ C 3 R nk+ 1 ; R n ,d is bounded together with its derivatives, ξ is a R n -valued weakly controlled path based on x, and r 1 . . . r k ∞. For convenience, we set r = 0 and, moreover, we will use the notation s y t = y t −r 1 , . . . , y t −r k , t ∈ [0, T ]. 15

3.1 Delayed controlled paths

As in the previous section, we will first make some heuristic considerations about the properties of a solution: set ˆ σ t = σ y t , s y t and suppose that y is a solution of 14 with y ∈ C κ 1 for a given 1 3 κ γ. Then we can write the integral form of our equation as δ y st = Z t s ˆ σ u d x u = ˆ σ s δx st + ρ st with ρ st = Z t s ˆ σ u − ˆ σ s d x u . Thus, we have again obtained a decomposition of y of the form δ y = ˆ σδx + ρ. Moreover, it follows still at a heuristic level that ˆ σ is bounded and satisfies | ˆ σ t − ˆ σ s | ≤ kσ ′ k ∞ k X i= | y t −r i − y s −r i | ≤ k + 1kσ ′ k ∞ k yk κ |t − s| κ . Thus, with the notation of Section 2.1, we have that ˆ σ belongs to C κ 1 and is bounded. The term ρ should again inherit both the regularities of δ ˆ σ and x. Thus, one should have that ρ ∈ C 2 κ 2 . In conclusion, the increment δ y should be decomposable into δ y = ˆ σδx + ρ with ˆ σ ∈ C κ 1 bounded and ρ ∈ C 2 κ 2 . 16 This is again the structure we will ask for a possible solution to 14. However, this decomposition does not take into account that equation 14 is actually a delay equation. To define the integral R t s ˆ σ u d x u , we have to enlarge the class of functions we will work with, and hence we will define a delayed controlled path hereafter DCP in short. Definition 3.1. Let 0 ≤ a ≤ b ≤ T and z ∈ C κ 1 [a, b]; R n with 1 3 κ ≤ γ. We say that z is a delayed controlled path based on x, if z a = α belongs to R n and if δz ∈ C κ 2 [a, b]; R n can be decomposed into δz st = k X i= ζ i s δx s −r i ,t −r i + ρ st for s , t ∈ [a, b], 17 where ρ ∈ C 2 κ 2 [a, b]; R n and ζ i ∈ C κ 1 [a, b]; R n ,d for i = 0, . . . , k. The space of delayed controlled paths on [a , b] will be denoted by D κ,α [a, b]; R n , and a path z ∈ 2039 D κ,α [a, b]; R n should be considered in fact as a k + 2-tuple z, ζ , . . . , ζ k . The norm on D κ,α [a, b]; R n is given by N [z; D κ,α [a, b]; R n ] = kδzk κ + kρk 2 κ + k X i= kζ i k ∞ + k X i= kδζ i k κ . Now we can sketch our strategy to solve the delay equation: 1. Consider the map T σ defined on Q κ,α [a, b]; R n × Q κ, ˜ α [a − r k , b − r 1 ]; R n by T σ z, ˜ z t = σz t , s˜ z t , t ∈ [a, b], 18 where we recall that the notation s˜ z has been introduced at 15. We will show that T σ maps Q κ,α [a, b]; R n × Q κ, ˜ α [a − r k , b − r 1 ]; R n smoothly onto a space of the form D κ, ˆ α [a, b]; R n ,d . 2. Define rigorously the integral R z u d x u = J zd x for a delayed controlled path z ∈ D κ, ˆ α [a, b]; R n ,d , show that J zd x belongs to Q κ,α [a, b]; R d , and compute its decom- position 13. Let us point out the following important fact: T σ creates “delay”, that is T σ z, ˜ z ∈ D κ, ˆ α [a, b]; R n ,d , while J creates “advance”, that is J zd x ∈ Q κ,α [a, b]; R n . 3. By combining the first two points, we will solve equation 14 by a fixed point argument on the intervals [0, r 1 ], [r 1 , 2r 1 ], . . . .

3.2 Action of the map T on controlled paths

Dokumen yang terkait

AN ALIS IS YU RID IS PUT USAN BE B AS DAL AM P E RKAR A TIND AK P IDA NA P E NY E RTA AN M E L AK U K A N P R AK T IK K E DO K T E RA N YA NG M E N G A K IB ATK AN M ATINYA P AS IE N ( PUT USA N N O MOR: 9 0/PID.B /2011/ PN.MD O)

0 82 16

ANALISIS FAKTOR YANGMEMPENGARUHI FERTILITAS PASANGAN USIA SUBUR DI DESA SEMBORO KECAMATAN SEMBORO KABUPATEN JEMBER TAHUN 2011

2 53 20

EFEKTIVITAS PENDIDIKAN KESEHATAN TENTANG PERTOLONGAN PERTAMA PADA KECELAKAAN (P3K) TERHADAP SIKAP MASYARAKAT DALAM PENANGANAN KORBAN KECELAKAAN LALU LINTAS (Studi Di Wilayah RT 05 RW 04 Kelurahan Sukun Kota Malang)

45 393 31

FAKTOR – FAKTOR YANG MEMPENGARUHI PENYERAPAN TENAGA KERJA INDUSTRI PENGOLAHAN BESAR DAN MENENGAH PADA TINGKAT KABUPATEN / KOTA DI JAWA TIMUR TAHUN 2006 - 2011

1 35 26

A DISCOURSE ANALYSIS ON “SPA: REGAIN BALANCE OF YOUR INNER AND OUTER BEAUTY” IN THE JAKARTA POST ON 4 MARCH 2011

9 161 13

Pengaruh kualitas aktiva produktif dan non performing financing terhadap return on asset perbankan syariah (Studi Pada 3 Bank Umum Syariah Tahun 2011 – 2014)

6 101 0

Pengaruh pemahaman fiqh muamalat mahasiswa terhadap keputusan membeli produk fashion palsu (study pada mahasiswa angkatan 2011 & 2012 prodi muamalat fakultas syariah dan hukum UIN Syarif Hidayatullah Jakarta)

0 22 0

Pendidikan Agama Islam Untuk Kelas 3 SD Kelas 3 Suyanto Suyoto 2011

4 108 178

ANALISIS NOTA KESEPAHAMAN ANTARA BANK INDONESIA, POLRI, DAN KEJAKSAAN REPUBLIK INDONESIA TAHUN 2011 SEBAGAI MEKANISME PERCEPATAN PENANGANAN TINDAK PIDANA PERBANKAN KHUSUSNYA BANK INDONESIA SEBAGAI PIHAK PELAPOR

1 17 40

KOORDINASI OTORITAS JASA KEUANGAN (OJK) DENGAN LEMBAGA PENJAMIN SIMPANAN (LPS) DAN BANK INDONESIA (BI) DALAM UPAYA PENANGANAN BANK BERMASALAH BERDASARKAN UNDANG-UNDANG RI NOMOR 21 TAHUN 2011 TENTANG OTORITAS JASA KEUANGAN

3 32 52