Classical weakly controlled paths CCP

i Let g ∈ C 1 [a, b]; R l ,d and h ∈ C 1 [a, b]; R d . Then gh ∈ C 1 [a, b]; R l and δgh = δg h + g δh. ii Let g ∈ C 1 [a, b]; R l ,d and h ∈ C 2 [a, b]; R d . Then gh ∈ C 2 [a, b]; R l and δgh = −δg h + g δh. iii Let g ∈ C 2 [a, b]; R l ,d and h ∈ C 1 [a, b]; R d . Then gh ∈ C 2 [a, b]; R l and δgh = δg h + g δh. iv Let g ∈ C 2 [a, b]; R l ,d and h ∈ C 2 [a, b]; R d ,p . Then gh ∈ C 3 [a, b]; R l ,p and δgh = −δg h + g δh.

2.2 Classical weakly controlled paths CCP

In the remainder of this article, we will use both the notations R t s f d g or J st f d g for the inte- gral of a function f with respect to a given function g on the interval [s, t]. Moreover, we set k f k ∞ = sup x ∈R d ,l | f x| for a function f : R d ,l → R m ,n and also kgk ∞ = sup t ∈[a,b] |g t | for a path g ∈ C κ 1 [a, b]; V . To simplify the notation we will write C γ k instead of C γ k [a, b]; V , if [a, b] and V are obvious from the context. Before we consider the technical details, we will make some heuristic considerations about the properties that the solution of equation 6 should have. Set ˆ σ t = σ y t , and suppose that y is a solution of 6, which satisfies y ∈ C κ 1 for a given 1 3 κ γ. Then the integral form of our equation can be written as y t = α + Z t ˆ σ u d x u , t ∈ [0, T ]. 11 Our approach to generalized integrals induces us to work with increments of the form δ y st = y t − y s instead of 11. It is immediate that one can decompose the increments of 11 into δ y st = Z t s ˆ σ u d x u = ˆ σ s δx st + ρ st with ρ st = Z t s ˆ σ u − ˆ σ s d x u . We thus have obtained a decomposition of y of the form δ y = ˆ σδx +ρ. Let us see, still at a heuristic level, which regularity we can expect for ˆ σ and ρ: If σ is bounded and continuously differentiable, we have that ˆ σ is bounded and | ˆ σ t − ˆ σ s | ≤ kσ ′ k ∞ k yk κ |t − s| κ , where k yk κ denotes the κ-Hölder norm of y. Hence ˆ σ belongs to C κ 1 and is bounded. As far as ρ is concerned, it should inherit both the regularities of δ ˆ σ and x, provided that the integral 2037 R t s ˆ σ u − ˆ σ s d x u = R t s δ ˆ σ su d x u is well defined. Thus, one should expect that ρ ∈ C 2 κ 2 . In summary, we have found that a solution δ y of equation 11 should be decomposable into δ y = ˆ σδx + ρ with ˆ σ ∈ C κ 1 bounded and ρ ∈ C 2 κ 2 . 12 This is precisely the structure we will demand for a possible solution of equation 6 respectively its integral form 11: Definition 2.5. Let a ≤ b ≤ T and let z be a path in C κ 1 [a, b]; R n with κ ≤ γ and 2κ + γ 1. We say that z is a classical weakly controlled path based on x, if z a = α ∈ R n and δz ∈ C κ 2 [a, b]; R n can be decomposed into δz = ζδx + r, i.e. δz st = ζ s δx st + ρ st , s , t ∈ [a, b], 13 with ζ ∈ C κ 1 [a, b]; R n ,d and ρ ∈ C 2 κ 2 [a, b]; R n . The space of classical weakly controlled paths on [a , b] will be denoted by Q κ,α [a, b]; R n , and a path z ∈ Q κ,α [a, b]; R n should be considered in fact as a couple z, ζ. The norm on Q κ,α [a, b]; R n is given by N [z; Q κ,α [a, b]; R n ] = kδzk κ + kρk 2 κ + kζk ∞ + kδζk κ . Note that in the above definition α corresponds to a given initial condition and ρ can be understood as a regular part. Moreover, observe that a can be negative. Now we can sketch the strategy used in [9], in order to solve equation 6: a Verify the stability of Q κ,α [a, b]; R n under a smooth map ϕ : R n → R n ,d . b Define rigorously the integral R z u d x u = J zd x for a classical weakly controlled path z and compute its decomposition 13. c Solve equation 6 in the space Q κ,α [a, b]; R n by a fixed point argument. Actually, for the second point one has to impose a priori the following hypothesis on the driving rough path, which is a standard assumption in the rough paths theory: Hypothesis 2.6. The R d -valued γ-Hölder path x admits a Lévy area, i.e. a process x 2 = J d x d x ∈ C 2 γ 2 [0, T ]; R d ,d , which satisfies δx 2 = δx ⊗ δx, that is ” δx 2 sut — i, j = δx i su δx j ut , for all s , u, t ∈ [0, T ], i, j ∈ {1, . . . , d}. Then, using the strategy sketched above, the following result is obtained in [9]: Theorem 2.7. Let x be a process satisfying Hypothesis 2.6 and let σ ∈ C 2 R n ; R n ,d be bounded together with its derivatives. Then we have: 1. Equation 6 admits a unique solution y in Q κ,α [0, T ]; R n for any κ γ such that 2κ + γ 1. 2. The mapping α, x, x 2 7→ y is continuous from R n × C γ 1 [0, T ]; R d × C 2 γ 2 [0, T ]; R d ,d to Q κ,α [0, T ]; R n , in a sense which is detailed in [9, Proposition 8]. 2038 3 The delay equation In this section, we make a first step towards the solution of the delay equation d y t = σ y t , y t −r 1 , . . . , y t −r k d x t , t ∈ [0, T ], y t = ξ t , t ∈ [−r k , 0], 14 where x is a R d -valued γ-Hölder continuous function with γ 1 3 , the function σ ∈ C 3 R nk+ 1 ; R n ,d is bounded together with its derivatives, ξ is a R n -valued weakly controlled path based on x, and r 1 . . . r k ∞. For convenience, we set r = 0 and, moreover, we will use the notation s y t = y t −r 1 , . . . , y t −r k , t ∈ [0, T ]. 15

3.1 Delayed controlled paths

Dokumen yang terkait

AN ALIS IS YU RID IS PUT USAN BE B AS DAL AM P E RKAR A TIND AK P IDA NA P E NY E RTA AN M E L AK U K A N P R AK T IK K E DO K T E RA N YA NG M E N G A K IB ATK AN M ATINYA P AS IE N ( PUT USA N N O MOR: 9 0/PID.B /2011/ PN.MD O)

0 82 16

ANALISIS FAKTOR YANGMEMPENGARUHI FERTILITAS PASANGAN USIA SUBUR DI DESA SEMBORO KECAMATAN SEMBORO KABUPATEN JEMBER TAHUN 2011

2 53 20

EFEKTIVITAS PENDIDIKAN KESEHATAN TENTANG PERTOLONGAN PERTAMA PADA KECELAKAAN (P3K) TERHADAP SIKAP MASYARAKAT DALAM PENANGANAN KORBAN KECELAKAAN LALU LINTAS (Studi Di Wilayah RT 05 RW 04 Kelurahan Sukun Kota Malang)

45 393 31

FAKTOR – FAKTOR YANG MEMPENGARUHI PENYERAPAN TENAGA KERJA INDUSTRI PENGOLAHAN BESAR DAN MENENGAH PADA TINGKAT KABUPATEN / KOTA DI JAWA TIMUR TAHUN 2006 - 2011

1 35 26

A DISCOURSE ANALYSIS ON “SPA: REGAIN BALANCE OF YOUR INNER AND OUTER BEAUTY” IN THE JAKARTA POST ON 4 MARCH 2011

9 161 13

Pengaruh kualitas aktiva produktif dan non performing financing terhadap return on asset perbankan syariah (Studi Pada 3 Bank Umum Syariah Tahun 2011 – 2014)

6 101 0

Pengaruh pemahaman fiqh muamalat mahasiswa terhadap keputusan membeli produk fashion palsu (study pada mahasiswa angkatan 2011 & 2012 prodi muamalat fakultas syariah dan hukum UIN Syarif Hidayatullah Jakarta)

0 22 0

Pendidikan Agama Islam Untuk Kelas 3 SD Kelas 3 Suyanto Suyoto 2011

4 108 178

ANALISIS NOTA KESEPAHAMAN ANTARA BANK INDONESIA, POLRI, DAN KEJAKSAAN REPUBLIK INDONESIA TAHUN 2011 SEBAGAI MEKANISME PERCEPATAN PENANGANAN TINDAK PIDANA PERBANKAN KHUSUSNYA BANK INDONESIA SEBAGAI PIHAK PELAPOR

1 17 40

KOORDINASI OTORITAS JASA KEUANGAN (OJK) DENGAN LEMBAGA PENJAMIN SIMPANAN (LPS) DAN BANK INDONESIA (BI) DALAM UPAYA PENANGANAN BANK BERMASALAH BERDASARKAN UNDANG-UNDANG RI NOMOR 21 TAHUN 2011 TENTANG OTORITAS JASA KEUANGAN

3 32 52