Integration of delayed controlled paths DCP

3.3 Integration of delayed controlled paths DCP

The aim of this section is to define the integral J m ∗ d x , where m is a delayed controlled path m ∈ D κ, ˆ α [a, b]; R d . Here we denote by A ∗ the transposition of a vector or matrix A and by A 1 · A 2 the inner product of two vectors or two matrices A 1 and A 2 , namely, if A 1 , A 2 ∈ R n ,d , then A 1 · A 2 = Tr A 1 A ∗ 2 . We will also write Q κ,α . We will also write Q κ,α resp. D κ,α instead of Q κ,α [a, b]; V resp. D κ,α [a, b]; V if there is no risk of confusion about [a, b] and V . Note that if the increments of m can be expressed like in 17, m ∗ admits the decomposition δm ∗ st = k X i= δx ∗ s −r i ,t −r i ζ i∗ s + ρ ∗ st , 42 where ρ ∗ ∈ C 2 κ 2 [a, b]; R 1,d and the densities ζ i , i = 0, . . . , k, satisfy the conditions of Definition 3.1. To illustrate the structure of the integral of a DCP, we first assume that the paths x, ζ i and ρ are smooth, and we express J m ∗ d x in terms of the operators δ and Λ. In this case, J m ∗ d x is well defined, and we have Z t s m ∗ u d x u = m ∗ s x t − x s + Z t s m ∗ u − m ∗ s d x u for a ≤ s ≤ t ≤ b, or in other words J m ∗ d x = m ∗ δx + J δm ∗ d x . 43 Now consider the term J δm ∗ d x : Using the decomposition 42 we obtain J δm ∗ d x = Z t s k X i= δx ∗ s −r i ,u −r i ζ i∗ s + ρ ∗ su d x u = A st + J st ρ ∗ d x 44 with A st = k X i= Z t s δx ∗ s −r i ,u −r i ζ i∗ s d x u . Since, for the moment, we are dealing with smooth paths, the density ζ i can be taken out of the integral above, and we have A st = k X i= ζ i s · x 2 st −r i , with the d × d matrix x 2 st v defined by x 2 st v = Z t s Z u+v s+v d x w d x 1 u , . . . , Z t s Z u+v s+v d x w d x d u , ≤ s ≤ t ≤ T, for v ∈ {−r k , . . . , −r }. Indeed, we can write Z t s δx ∗ s −r i ,u −r i ζ i∗ s d x u = Z t s ζ i s · [δx s −r i ,u −r i ⊗ d x u ] = ζ i s · Z t s δx s −r i ,u −r i ⊗ d x u = ζ i s · x 2 st −r i . 2047 Inserting the expression of A st into 43 and 44 we obtain J st m ∗ d x = m ∗ s δx st + k X i= ζ i s · x 2 st −r i + J st ρ ∗ d x 45 for a ≤ s ≤ t ≤ b. Let us now consider the Lévy area term x 2 st −r i . If x is a smooth path, it is readily checked that δx 2 −r i sut = x 2 st −r i − x 2 su −r i − x 2 ut −r i = δx s −r i ,u −r i ⊗ δx ut , for any i = 0, . . . , k. This decomposition of δx 2 −r i into a product of increments is the fundamental algebraic property we will use to extend the above integral to non-smooth paths. Hence, we will need the following assumption: Hypothesis 3.4. The path x is a R d -valued γ-Hölder continuous function with γ 1 3 and admits a delayed Lévy area, i.e., for all v ∈ {−r k , . . . , −r }, there exists a path x 2 v ∈ C 2 γ 2 [0, T ]; R d ,d , which satisfies δx 2 v = δxv ⊗ δx, 46 that is ” δx 2 v sut — i, j = δx i s+v ,u+v δx j ut for all s , u, t ∈ [0, T ], i , j ∈ {1, . . . , d}. In the above formulae, we have set xv for the shifted path xv s = x s+v . To finish the analysis of the smooth case it remains to find a suitable expression for J ρ ∗ d x . For this, we write 45 as J st ρ ∗ d x = J st m ∗ d x − m ∗ s δx st − k X i= ζ i s · x 2 st −r i 47 and we apply δ to both sides of the above equation. For smooth paths m and x we have δJ m ∗ d x = 0, δm ∗ δx = −δm ∗ δx, by Proposition 2.4. Hence, applying these relations to the right hand side of 47, using the decom- position 42 and again Proposition 2.4, we obtain [δJ ρ ∗ d x] sut = δm ∗ su δx ut + k X i= δζ i su · x 2 st −r i − k X i= ζ i s · δx 2 −r i sut = k X i= δx ∗ s −r i ,u −r i ζ i∗ s δx ut + ρ ∗ su δx ut + k X i= δζ i su · x 2 st −r i − k X i= ζ i s · [δx s −r i ,t −r i ⊗ δx ut ] = ρ ∗ su δx ut + k X i= δζ i su · x 2 st −r i . 2048 In summary, we have derived the representation δJ ρ ∗ d x = ρ ∗ δx + k X i= δζ i · x 2 −r i , for two regular paths m and x. If m, x, ζ i , i = 0, . . . , k and x 2 are smooth enough, we have δJ ρ ∗ d x ∈ Z C 1+ 3 and thus belongs to the domain of Λ due to Proposition 2.2. Recall that δδ = 0. Hence, it follows J ρ ∗ d x = Λ ρ ∗ δx + k X i= δζ i · x 2 −r i , and inserting this identity into 45 we end up with J m ∗ d x = m ∗ δx + k X i= ζ i · x 2 −r i + Λ ρ ∗ δx + k X i= δζ i · x 2 −r i . 48 The expression above can be generalized to the non-smooth case, since J m ∗ d x has been ex- pressed only in terms of increments of m and x. Consequently, we will use 48 as the definition for our extended integral. Proposition 3.5. For fixed 1 3 κ γ, let x be a path satisfying Hypothesis 3.4. Furthermore, let m ∈ D κ, ˆ α [a, b]; R d such that the increments of m are given by 17. Define z by z a = α with α ∈ R and δz st = m ∗ s δx st + k X i= ζ i s · x 2 st −r i + Λ st ρ ∗ δx + k X i= δζ i · x 2 −r i 49 for a ≤ s ≤ t ≤ b. Finally, set J m ∗ d x = δz. 50 Then: 1. J m ∗ d x coincides with the usual Riemann integral, whenever m and x are smooth functions. 2. z is well-defined as an element of Q κ,α [a, b]; R with decomposition δz = m ∗ δx + ˆ ρ, where ˆ ρ ∈ C 2 κ 2 [a, b]; R is given by ˆ ρ = k X i= ζ i · x 2 −r i + Λ ρ ∗ δx + k X i= δζ i · x 2 −r i . 3. The semi-norm of z can be estimated as N [z; Q κ,α [a, b]; R] ≤ kmk ∞ + c int b − a γ−κ |ˆ α| + N [m; D κ, ˆ α [a, b]; R d ] 51 where c int = c κ,γ,T kxk γ + k X i= kx 2 −r i k 2 γ with the constant c κ,γ,T depending only on κ, γ and T . In particular, kzk κ ≤ c int b − a γ−κ |ˆ α| + N [m; D κ, ˆ α [a, b]; R d ]. 52 2049 4. It holds J st m ∗ d x = lim |Π st |→0 N X i=    m ∗ t i δx t i t i+ 1 + k X j= ζ j t i · x 2 t i t i+ 1 −r j    53 for any a ≤ s t ≤ b, where the limit is taken over all partitions Π st = {s = t , . . . , t N = t} of [s, t], as the mesh of the partition goes to zero. Proof. 1 The first of our claims is a direct consequence of the derivation of equation 48. 2 Set c x = kxk γ + P k i= kx 2 −r i k 2 γ . Now we show that equation 49 defines a classical weakly controlled path. Actually, the term m ∗ δx is trivially of the desired form for an element of Q κ,α . So consider the term h 1 st = P k i= ζ i s · x 2 st −r i for a ≤ s ≤ t ≤ b. We have |h 1 st | ≤ k X i= kζ i k ∞ |x 2 st −r i | ≤ k X i= kζ i k ∞ c x |t − s| 2 γ ≤ k X i= kζ i k ∞ c x b − a 2 γ−κ |t − s| 2 κ . Thus kh 1 k 2 κ ≤ c x b − a 2 γ−κ N [m; D κ, ˆ α [a, b]; R d ]. The term h 2 = ρ ∗ δx + k X i= δζ i · x 2 −r i satisfies δh 2 = 0. Indeed, recall that the increments of m are given by 17. Hence we have ρ = δm − k X i= ζ i δx−r i and h 2 = δm ∗ δx − k X i= δx−r i ∗ ζ i∗ δx + k X i= δζ i · x 2 −r i = δm ∗ δx − k X i= ζ i · δx 2 −r i + k X i= δζ i · x 2 −r i using Hypothesis 3.4 for the Lévy area. But Proposition 2.4 gives δζ i · x 2 −r i = −δζ i · x 2 −r i + ζ i · δx 2 −r i . Hence it follows h 2 = δm ∗ δx − k X i= δζ i · x 2 −r i 2050 and thus δh 2 = 0 using again Proposition 2.4 and δδ = 0. Moreover, recalling the notation 8, it holds kρ ∗ δxk 2 κ,κ ≤ c x b − a γ−κ kρk 2 κ and k k X i= δζ i · x 2 −r i k κ,2κ ≤ c x b − a 2 γ−κ k X i= kζ i k κ . Since γ κ 1 3 and δh 2 = 0, we have h 2 ∈ DomΛ and kh 2 k 3 κ ≤ c x 1 + T γ−κ b − a γ−κ N [m; D κ, ˆ α [a, b]; R d ]. By Proposition 2.2 it follows kΛh 2 k 3 κ ≤ 1 2 3 κ − 2 kh 2 k 3 κ and we finally obtain kh 1 + Λh 2 k 2 κ ≤ c x 2 3 κ − 1 2 3 κ − 2 1 + T γ−κ b − a γ−κ N [m; D κ, ˆ α [a, b]; R d ]. 54 Thus we have proved that ˆ ρ ∈ C 2 κ 2 [a, b]; R and hence that z ∈ Q κ,α [a, b]; R. 3 Because of δz st = m ∗ s δx st + ˆ ρ st and m ∈ D κ, ˆ α [a, b]; R d the estimates 51 and 52 now follow from 54. 4 By Proposition 2.4 ii and the decomposition 17 we have that δm ∗ δx sut = −δm ∗ su δx ut = −ρ ∗ su δx ut − k X i= δx ∗ s −r i ,u −r i ζ i∗ u δx ut . Thus, applying again Proposition 2.4 ii, and recalling Hypothesis 3.4 for the Lévy area, we obtain that δ m ∗ δx + k X i= ζ i · x 2 −r i = −   ρ ∗ δx + k X i= δζ i · x 2 −r i   . Hence, equation 49 can also be written as J m ∗ d x = [ Id − Λδ] m ∗ δx + k X i= ζ i · x 2 −r i , 55 and a direct application of Corollary 2.3 yields 53, which ends our proof. 2051 Recall that the notation A ∗ stands for the transpose of a matrix A. Moreover, in the sequel, we will denote by c nor m a constant, which depends only on the chosen norm of R n ,d . Then, for a matrix- valued delayed controlled path m ∈ D κ, ˆ α [a, b]; R n ,d , the integral J m d x will be defined by J m d x =     J m 1∗ d x .. . J m n∗ d x     , where m i ∈ D κ, ˆ α [a, b]; R d for i = 1, . . . , n and we have set m = m 1 , . . . , m n ∗ . Now we have by 51 that N [J m d x; Q κ,α [a, b]; R n ] 56 ≤ c nor m € kmk ∞ + c int b − a γ−κ |ˆ α| + N [m; D κ, ˆ α [a, b]; R n ,d ] Š . For two paths m 1 , m 2 ∈ D κ, ˆ α [a, b]; R n ,d we obtain the following estimate for the difference of z 1 = J m 1 d x and z 2 = J m 2 d x : Since m 1 a − m 2 a = 0, we have N [z 1 − z 2 ; Q κ,0 [a, b]; R n ] 57 ≤ 2c nor m c int b − a γ−κ N ” m 1 − m 2 ; D κ,0 [a, b]; R n ,d — . 4 Solution to the delay equation With the preparations of the last section, we can now solve the equation ¨ d y t = σ y t , y t −r 1 , . . . , y t −r k d x t , t ∈ [0, T ], y t = ξ t , t ∈ [−r k , 0], 58 in the class of classical weakly controlled paths. For this, it will be crucial to use mappings of the type Γ : Q κ,α [a, b]; R n × Q κ, ˜ α [a − r k , b − r 1 ]; R n → Q κ,α [a, b]; R n for 0 ≤ a ≤ b ≤ T , which are defined by z, ˜z 7→ ˆz, where ˆz = α and δˆ z given by δˆ z = J T σ z, ˜ z d x , with T σ as in Proposition 3.2. The first part of the current section will be devoted to the study of this map. By 56 we have that N [J T σ z, ˜ z d x ; Q κ,α [a, b]; R n ] ≤ c nor m € kσk ∞ + c int b − a γ−κ |ˆ α| + N [T σ z, ˜ z ; D κ, ˆ α [a, b]; R n ,d ] Š ≤ c nor m € kσk ∞ 1 + c int T γ−κ + c int b − a γ−κ N [T σ z, ˜ z ; D κ, ˆ α [a, b]; R n ,d ] Š due to |ˆ α| = |σz a , s˜ z a | ≤ kσk ∞ . Since T σ z, ˜ z =     T σ 1∗ z, ˜ z .. . T σ n∗ z, ˜ z     , 2052 where σ i ∈ C 3 b R nk+ 1 ; R d for i = 1, . . . , n and σ = σ 1 , . . . , σ n ∗ , it follows by 20 that N [T σ z, ˜ z ; D κ, ˆ α [a; b]; R n ,d ] ≤ c σ,T € 1 + N 2 [z; Q κ,α [a, b]; R n ] + N 2 [˜ z ; Q κ, ˜ α [a − r k , b − r 1 ]; R n ] Š . Combining these two estimates we obtain N ” Γz, ˜ z ; Q κ,α [a; b]; R n — 59 ≤ c growth € 1 + N 2 [˜ z ; Q κ, ˜ α [a − r k , b − r 1 ]; R n ] Š € 1 + b − a γ−κ N 2 [z; Q κ,α [a, b]; R n ] Š , where the constant c growth depends only on c int , c nor m , σ, κ, γ and T . Thus the semi-norm of the mapping Γ is quadratically bounded in terms of the semi-norms of z and ˜ z . Now let z 1 , z 2 ∈ Q κ,α [a, b]; R n and ˜ z ∈ Q κ, ˜ α [a − r k , b − r 1 ]; R n . Then, by 57 we have N [Γz 1 , ˜ z − Γz 2 , ˜ z ; Q κ,0 [a, b]; R n ] 60 ≤ 2c nor m c int b − a γ−κ N [T σ z 1 , ˜ z − T σ z 2 , ˜ z ; D κ,0 [a, b]; R n ,d ]. Applying Proposition 3.3, i.e. inequality 26, to the right hand side of the above equation we obtain that N [Γz 1 , ˜ z − Γz 2 , ˜ z ; Q κ,0 [a, b]; R n ] 61 ≤ c lip 1 + Cz 1 , z 2 , ˜ z 2 N [z 1 − z 2 ; Q κ,0 [a, b]; R n ] b − a γ−κ , with a constant c lip depending only on c int , c nor m , σ, κ, γ and T , and moreover Cz 1 , z 2 , ˜ z = N [˜z; Q κ, ˜ α [a − r k , b − r 1 ]; R n ] + N [z 1 ; Q κ,α [a, b]; R n ] + N [z 2 ; Q κ,α [a, b]; R n ]. Thus, for fixed ˜ z the mappings Γ ·, ˜z are locally Lipschitz continuous with respect to the semi-norm N [·; Q κ,0 [a, b]; R n ]. We also need the following Lemma, which can be shown by straightforward calculations: Lemma 4.1. Let c, α ≥ 0, τ ∈ [0, T ] and define A c , α τ = {u ∈ R ∗ + : c1 + τ α u 2 ≤ u}. Set also τ ∗ = 8c 2 −1α . Then we have A c , α τ ∗ 6= ; and sup{u ∈ R ∗ + ; u ∈ A c , α τ ∗ } ≤ 4 + 2 p 2c. Now we can state and prove our main result. Recall that we use the notations r = r k and r = 0. Theorem 4.2. Let x be a path satisfying Hypothesis 3.4, let ξ ∈ Q κ,α [−r, 0]; R n and let σ ∈ C 3 b R nk+ 1 ; R n ,d . Then we have: 1. Equation 58 admits a unique solution y in Q κ,ξ [0, T ]; R n for any 1 3 κ γ and any T 0. 2053 2. Let F : Q κ,α [−r, 0]; R n × C γ 1 [0, T ]; R d × C 2 γ 2 [0, T ]; R d ,d k+ 1 → C κ 1 [0, T ]; R n be the mapping defined by F € ξ, x, x

Dokumen yang terkait

AN ALIS IS YU RID IS PUT USAN BE B AS DAL AM P E RKAR A TIND AK P IDA NA P E NY E RTA AN M E L AK U K A N P R AK T IK K E DO K T E RA N YA NG M E N G A K IB ATK AN M ATINYA P AS IE N ( PUT USA N N O MOR: 9 0/PID.B /2011/ PN.MD O)

0 82 16

ANALISIS FAKTOR YANGMEMPENGARUHI FERTILITAS PASANGAN USIA SUBUR DI DESA SEMBORO KECAMATAN SEMBORO KABUPATEN JEMBER TAHUN 2011

2 53 20

EFEKTIVITAS PENDIDIKAN KESEHATAN TENTANG PERTOLONGAN PERTAMA PADA KECELAKAAN (P3K) TERHADAP SIKAP MASYARAKAT DALAM PENANGANAN KORBAN KECELAKAAN LALU LINTAS (Studi Di Wilayah RT 05 RW 04 Kelurahan Sukun Kota Malang)

45 393 31

FAKTOR – FAKTOR YANG MEMPENGARUHI PENYERAPAN TENAGA KERJA INDUSTRI PENGOLAHAN BESAR DAN MENENGAH PADA TINGKAT KABUPATEN / KOTA DI JAWA TIMUR TAHUN 2006 - 2011

1 35 26

A DISCOURSE ANALYSIS ON “SPA: REGAIN BALANCE OF YOUR INNER AND OUTER BEAUTY” IN THE JAKARTA POST ON 4 MARCH 2011

9 161 13

Pengaruh kualitas aktiva produktif dan non performing financing terhadap return on asset perbankan syariah (Studi Pada 3 Bank Umum Syariah Tahun 2011 – 2014)

6 101 0

Pengaruh pemahaman fiqh muamalat mahasiswa terhadap keputusan membeli produk fashion palsu (study pada mahasiswa angkatan 2011 & 2012 prodi muamalat fakultas syariah dan hukum UIN Syarif Hidayatullah Jakarta)

0 22 0

Pendidikan Agama Islam Untuk Kelas 3 SD Kelas 3 Suyanto Suyoto 2011

4 108 178

ANALISIS NOTA KESEPAHAMAN ANTARA BANK INDONESIA, POLRI, DAN KEJAKSAAN REPUBLIK INDONESIA TAHUN 2011 SEBAGAI MEKANISME PERCEPATAN PENANGANAN TINDAK PIDANA PERBANKAN KHUSUSNYA BANK INDONESIA SEBAGAI PIHAK PELAPOR

1 17 40

KOORDINASI OTORITAS JASA KEUANGAN (OJK) DENGAN LEMBAGA PENJAMIN SIMPANAN (LPS) DAN BANK INDONESIA (BI) DALAM UPAYA PENANGANAN BANK BERMASALAH BERDASARKAN UNDANG-UNDANG RI NOMOR 21 TAHUN 2011 TENTANG OTORITAS JASA KEUANGAN

3 32 52