Some bounds on the density

542 Electronic Communications in Probability Remark 7. Although we do not use this fact explicitly, it is interesting to observe that the invariant probability π is symmetric. To show this, we set evx := e −V 1 x v −x and we note that by the first relation in 9, with the change of variables y 7→ − y, we can write evx = 1 λ Z R e −V 1 x k −x, y v y d y = 1 λ Z R e −V 1 x k −x, − y e V 1 y ev y d y . However e −V 1 x k −x, − y e V 1 y = k y, x, as it follows by 8 and the symmetry of V 1 recall our assumption C1. Therefore ev satisfies the same functional equation evx = 1 λ R R ev y k y, x d y as the right eigenfunction w, cf. the second relation in 9. Since the right eigenfunction is uniquely determined up to constant multiples, there must exist C 0 such that wx = C evx for all x ∈ R. Recalling 18, we can then write πdx = 1 ec e −V 1 x vx v −x dx , ec := c C , 27 from which the symmetry of π is evident. From the symmetry of π and 25 it follows in particular that E 0,0 Y n → 0 as n → ∞, whence the integrated Markov chain W = {W i } i ∈N is somewhat close to a random walk with zero-mean increments. We stress that the symmetry of π follows just by the symmetry of V 1 , with no need of an analogous requirement on V 2 . Let us give a more intuitive explanation of this fact. When V 1 is symmetric, one can easily check from 10 and 8 that the transition density px, y or equivalently kx, y is invariant under the joint application of time reversal and space reflection: by this we mean that for all n ∈ N and x 1 , . . . , x n ∈ R px 1 , x 2 · · · px n −1 , x n · px n , x 1 = p−x n , −x n −1 · · · p−x 2 , −x 1 · p−x 1 , −x n . 28 Note that V 2 plays no role for the validity of 28. The point is that, whenever relation 28 holds, the invariant measure of the kernel px, y is symmetric. In fact, 28 implies that the function hx := px, x p−x, −x, where x ∈ R is an arbitrary fixed point, satisfies hx px, y = h y p − y, −x , ∀x, y ∈ R . 29 It is then an immediate consequence of 29 that h −x = hx for all x ∈ R and that the measure hxdx is invariant. For our model one computes easily hx = const. e −V 1 x vx v −x, in accordance with 27.

2.3 Some bounds on the density

We close this section with some bounds on the behavior of the density ϕ 0,0 n x, y at x, y = 0, 0. Proposition 8. There exist positive constants C 1 , C 2 such that for all odd N ∈ N C 1 N ≤ ϕ 0,0 N 0, 0 ≤ C 2 . 30 The restriction to odd values of N is just for technical convenience. We point out that neither of the bounds in 30 is sharp, as the conjectured behavior in analogy with the pure gradient case, cf. [ 3 ] is ϕ 0,0 N 0, 0 ∼ const. N −12 . Localization for ∇ + ∆-pinning models 543 Proof of Proposition 8. We start with the lower bound. By Proposition 5 and equation 3, we have ϕ 0,0 2N +1 0, 0 = 1 λ 2N +1 Z 0,2N = 1 λ 2N +1 Z R 2N −1 e − P 2N +1 i=1 V 1 ∇ϕ i − P 2N i=0 V 2 ∆ϕ i 2N −1 Y i=1 d ϕ i , where we recall that the boundary conditions are ϕ −1 = ϕ = ϕ 2N = ϕ 2N +1 = 0. To get a lower bound, we restrict the integration on the set C 1 N := § ϕ 1 , . . . , ϕ 2N −1 ∈ R 2N −1 : |ϕ N − ϕ N −1 | γ 2 , |ϕ N − ϕ N +1 | γ 2 ª , where γ 0 is the same as in assumption C2. On C 1 N we have |∇ϕ N +1 | γ2 and |∆ϕ N | γ, therefore V 2 ∆ϕ N ≤ M γ := sup |x|≤γ V 2 x ∞. Also note that V 1 ∇ϕ 2N +1 = V 1 0 due to the boundary conditions. By the symmetry of V 1 recall assumption C1, setting C 2 N ϕ N := {ϕ 1 , . . . , ϕ N −1 ∈ R N −1 : |ϕ N − ϕ N −1 | γ2}, we can write ϕ 0,0 2N +1 0, 0 ≥ e −M γ +V 1 λ 2N +1 Z C 1 N e − P N i=1 V 1 ∇ϕ i − P N −1 i=0 V 2 ∆ϕ i e − P 2N +1 i=N +1 V 1 ∇ϕ i − P 2N i=N +1 V 2 ∆ϕ i 2N −1 Y i=1 d ϕ i = e −M γ +V 1 λ 2N +1 Z R d ϕ N   Z C 2 N ϕ N e − P N i=1 V 1 ∇ϕ i − P N −1 i=0 V 2 ∆ϕ i N −1 Y i=1 d ϕ i   2 . For a given c N 0, we restrict the integration over ϕ N ∈ [−c N , c N ] and we apply Jensen’s inequal- ity, getting ϕ 0,0 2N +1 0, 0 ≥ e −M γ +V 1 λ · 2c N   1 λ N Z c N −c N d ϕ N Z C 2 N ϕ N e − P N i=1 V 1 ∇ϕ i − P N −1 i=0 V 2 ∆ϕ i N −1 Y i=1 d ϕ i   2 ≥ e −M γ +V 1 λ · 2c N v0 2 kvk 2 ∞   1 λ N Z c N −c N d ϕ N Z C 2 N ϕ N v ϕ N − ϕ N −1 v0 · e − P N i=1 V 1 ∇ϕ i − P N −1 i=0 V 2 ∆ϕ i N −1 Y i=1 d ϕ i   2 = e −M γ +V 1 λ · 2c N v0 2 kvk 2 ∞ ” P 0,0 |W N | ≤ c N , |W N − W N −1 | ≤ γ2 — 2 , 31 where in the last equality we have used Proposition 4. Now we observe that P 0,0 |W N | ≤ c N , |Y N | ≤ γ2 ≥ 1 − P 0,0 |W N | c N − P 0,0 |Y N | γ2 ≥ 1 − 1 c N E 0,0 [|W N |] − P 0,0 |Y N | γ2 . 32 By 26, as N → ∞ we have P 0,0 |Y N | γ2 → πR \ − γ 2 , γ 2 =: 1 − 3η, with η 0, therefore P 0,0 |Y N | γ2 ≤ 1 − 2η for N large enough. On the other hand, by Proposition 6 we have E 0,0 [|W N |] ≤ N X n=1 E 0,0 [|Y n |] ≤ C N . 33 544 Electronic Communications in Probability If we choose c N := C N η, from 31, 32 and 33 we obtain ϕ 0,0 2N +1 0, 0 ≥ e −M γ +V 1 2 λC v0 2 kvk 2 ∞ η 3 1 N = const. N , which is the desired lower bound in 30. The upper bound is easier. By assumptions C1 and C2 both V 1 and V 2 are bounded from below, therefore we can replace V 1 ∇ϕ 2N +1 , V 1 ∇ϕ 2N , V 2 ∆ϕ 2N and V 2 ∆ϕ 2N −1 by the constant ec := inf x ∈R min {V 1 x, V 2 x} ∈ R getting the upper bound: ϕ 0,0 2N +1 0, 0 = 1 λ 2N +1 Z R 2N −1 e −H [−1,2N+1] ϕ 2N −1 Y i=1 d ϕ i ≤ e −4ec λ 2N +1 Z R 2N −1 e −H [−1,2N−1] ϕ 2N −1 Y i=1 d ϕ i . Recalling Proposition 4 and Proposition 6, we obtain ϕ 0,0 2N +1 0, 0 ≤ e −4ec λ 2 Z R 2 v0 v ϕ 2N −1 − ϕ 2N −2 P 0,0 W 2N −2 ∈ dϕ 2N −2 , W 2N −1 ∈ dϕ 2N −1 = v0 λ 2 e −4ec E 0,0 1 vY 2N −1 ≤ v0 λ 2 e −4ec C = const. , which completes the proof of 30. 3 A lower bound on the partition function We are going to give an explicit lower bound on the partition function in terms of a suitable renewal process. First of all, we rewrite equation 3 as Z ǫ,N = N −1 X k=0 ǫ k X A ⊆{1,...,N−1} |A|=k Z e −H [−1,N+1] ϕ Y m ∈A δ dϕ m Y n ∈A c d ϕ n , 34 where we set A c := {1, . . . , N − 1} \ A for convenience.

3.1 A renewal process lower bound

Dokumen yang terkait

AN ALIS IS YU RID IS PUT USAN BE B AS DAL AM P E RKAR A TIND AK P IDA NA P E NY E RTA AN M E L AK U K A N P R AK T IK K E DO K T E RA N YA NG M E N G A K IB ATK AN M ATINYA P AS IE N ( PUT USA N N O MOR: 9 0/PID.B /2011/ PN.MD O)

0 82 16

ANALISIS FAKTOR YANGMEMPENGARUHI FERTILITAS PASANGAN USIA SUBUR DI DESA SEMBORO KECAMATAN SEMBORO KABUPATEN JEMBER TAHUN 2011

2 53 20

EFEKTIVITAS PENDIDIKAN KESEHATAN TENTANG PERTOLONGAN PERTAMA PADA KECELAKAAN (P3K) TERHADAP SIKAP MASYARAKAT DALAM PENANGANAN KORBAN KECELAKAAN LALU LINTAS (Studi Di Wilayah RT 05 RW 04 Kelurahan Sukun Kota Malang)

45 393 31

FAKTOR – FAKTOR YANG MEMPENGARUHI PENYERAPAN TENAGA KERJA INDUSTRI PENGOLAHAN BESAR DAN MENENGAH PADA TINGKAT KABUPATEN / KOTA DI JAWA TIMUR TAHUN 2006 - 2011

1 35 26

A DISCOURSE ANALYSIS ON “SPA: REGAIN BALANCE OF YOUR INNER AND OUTER BEAUTY” IN THE JAKARTA POST ON 4 MARCH 2011

9 161 13

Pengaruh kualitas aktiva produktif dan non performing financing terhadap return on asset perbankan syariah (Studi Pada 3 Bank Umum Syariah Tahun 2011 – 2014)

6 101 0

Pengaruh pemahaman fiqh muamalat mahasiswa terhadap keputusan membeli produk fashion palsu (study pada mahasiswa angkatan 2011 & 2012 prodi muamalat fakultas syariah dan hukum UIN Syarif Hidayatullah Jakarta)

0 22 0

Pendidikan Agama Islam Untuk Kelas 3 SD Kelas 3 Suyanto Suyoto 2011

4 108 178

ANALISIS NOTA KESEPAHAMAN ANTARA BANK INDONESIA, POLRI, DAN KEJAKSAAN REPUBLIK INDONESIA TAHUN 2011 SEBAGAI MEKANISME PERCEPATAN PENANGANAN TINDAK PIDANA PERBANKAN KHUSUSNYA BANK INDONESIA SEBAGAI PIHAK PELAPOR

1 17 40

KOORDINASI OTORITAS JASA KEUANGAN (OJK) DENGAN LEMBAGA PENJAMIN SIMPANAN (LPS) DAN BANK INDONESIA (BI) DALAM UPAYA PENANGANAN BANK BERMASALAH BERDASARKAN UNDANG-UNDANG RI NOMOR 21 TAHUN 2011 TENTANG OTORITAS JASA KEUANGAN

3 32 52