A renewal process lower bound

544 Electronic Communications in Probability If we choose c N := C N η, from 31, 32 and 33 we obtain ϕ 0,0 2N +1 0, 0 ≥ e −M γ +V 1 2 λC v0 2 kvk 2 ∞ η 3 1 N = const. N , which is the desired lower bound in 30. The upper bound is easier. By assumptions C1 and C2 both V 1 and V 2 are bounded from below, therefore we can replace V 1 ∇ϕ 2N +1 , V 1 ∇ϕ 2N , V 2 ∆ϕ 2N and V 2 ∆ϕ 2N −1 by the constant ec := inf x ∈R min {V 1 x, V 2 x} ∈ R getting the upper bound: ϕ 0,0 2N +1 0, 0 = 1 λ 2N +1 Z R 2N −1 e −H [−1,2N+1] ϕ 2N −1 Y i=1 d ϕ i ≤ e −4ec λ 2N +1 Z R 2N −1 e −H [−1,2N−1] ϕ 2N −1 Y i=1 d ϕ i . Recalling Proposition 4 and Proposition 6, we obtain ϕ 0,0 2N +1 0, 0 ≤ e −4ec λ 2 Z R 2 v0 v ϕ 2N −1 − ϕ 2N −2 P 0,0 W 2N −2 ∈ dϕ 2N −2 , W 2N −1 ∈ dϕ 2N −1 = v0 λ 2 e −4ec E 0,0 1 vY 2N −1 ≤ v0 λ 2 e −4ec C = const. , which completes the proof of 30. 3 A lower bound on the partition function We are going to give an explicit lower bound on the partition function in terms of a suitable renewal process. First of all, we rewrite equation 3 as Z ǫ,N = N −1 X k=0 ǫ k X A ⊆{1,...,N−1} |A|=k Z e −H [−1,N+1] ϕ Y m ∈A δ dϕ m Y n ∈A c d ϕ n , 34 where we set A c := {1, . . . , N − 1} \ A for convenience.

3.1 A renewal process lower bound

We restrict the summation over A in 34 to the class of subsets B 2k consisting of 2k points organized in k consecutive couples: B 2k := {t 1 − 1, t 1 , . . . , t k − 1, t k } | 0 = t t 1 . . . t k ≤ N − 1 and t i − t i −1 ≥ 2 ∀i . Localization for ∇ + ∆-pinning models 545 Plainly, B 2k = ; for k N − 12. We then obtain from 34 Z ǫ,N ≥ ⌊N−12⌋ X k=0 ǫ 2k X A ∈B 2k Z e −H [−1,N+1] ϕ Y m ∈A δ dϕ m Y n ∈A c d ϕ n = ⌊N−12⌋ X k=0 ǫ 2k X 0=t t 1 ...t k t k+1 =N +1 t i −t i −1 ≥2 ∀i≤k+1 k+1 Y j=1 e Kt j − t j −1 , 35 where we have set for n ∈ N e Kn :=              if n = 1 e −H [−1,2] 0,0,0,0 = e −2V 1 0−2V 2 if n = 2 Z R n −2 e −H [−1,n] w −1 ,...,w n dw 1 · · · dw n −2 with w −1 = 0, w = 0, w n −1 = 0, w n = 0    if n ≥ 3 . 36 We stress that a factorization of the form 35 is possible because the Hamiltonian H [−1,N+1] ϕ consists of two- and three-body terms and we have restricted the sum over subsets in B 2k , that consist of consecutive couples of zeros. We also note that the condition t i − t i −1 ≥ 2 is immaterial, because by definition e K1 = 0. We now give a probabilistic interpretation to the right hand side of 35 in terms of a renewal process. To this purpose, for every ǫ 0 and for n ∈ N we define K ǫ 1 := 0 , K ǫ n := ǫ 2 λ n e Kn e −µ ǫ n = ǫ 2 ϕ 0,0 n 0, 0 e −µ ǫ n , ∀n ≥ 2 . where the second equality follows recalling 36, Proposition 4 and the definition 14 of the density ϕ n . The constant µ ǫ is chosen to make K ǫ a probability on N: X n ∈N K ǫ n = 1 , that is ∞ X n=2 ϕ 0,0 n 0, 0 e −µ ǫ n = 1 ǫ 2 . 37 It follows from Proposition 8 that 0 µ ǫ ∞ for every ǫ 0. We can therefore define a renewal process {η n } n ≥0 , P ǫ on N with inter-arrival law K ǫ ·. More explicitly, η := 0 and the increments {η k+1 − η k } k ≥0 are independent, identically distributed random variables with marginal law P ǫ η k+1 − η k = n = K ǫ n. Coming back to 35, we can write Z ǫ,N ≥ λ N +1 e N +1µ ǫ ǫ 2 ⌊N−12⌋ X k=0 X 0=t t 1 ...t k t k+1 =N +1 k+1 Y j=1 K ǫ t j − t j −1 = λ N +1 e N +1µ ǫ ǫ 2 ⌊N−12⌋ X k=0 X 0=t t 1 ...t k t k+1 =N +1 P ǫ η 1 = t 1 , . . . , η k+1 = t k+1 = λ N +1 e N +1µ ǫ ǫ 2 ⌊N−12⌋ X k=0 P ǫ η k+1 = N + 1 = λ N +1 e N +1µ ǫ ǫ 2 P ǫ N + 1 ∈ η , 38 where in the last equality we look at η = {η k } k ≥0 as a random subset of N , so that {N + 1 ∈ η} = S ∞ m=1 {η m = N + 1} note that P ǫ η k+1 = N + 1 = 0 for k ⌊N − 12⌋. We have thus obtained a lower bound on the partition function Z ǫ,N of our model in terms of the renewal mass function or Green function of the renewal process {η n } n ≥0 }, P ǫ . 546 Electronic Communications in Probability

3.2 Proof of Theorem 1

Dokumen yang terkait

AN ALIS IS YU RID IS PUT USAN BE B AS DAL AM P E RKAR A TIND AK P IDA NA P E NY E RTA AN M E L AK U K A N P R AK T IK K E DO K T E RA N YA NG M E N G A K IB ATK AN M ATINYA P AS IE N ( PUT USA N N O MOR: 9 0/PID.B /2011/ PN.MD O)

0 82 16

ANALISIS FAKTOR YANGMEMPENGARUHI FERTILITAS PASANGAN USIA SUBUR DI DESA SEMBORO KECAMATAN SEMBORO KABUPATEN JEMBER TAHUN 2011

2 53 20

EFEKTIVITAS PENDIDIKAN KESEHATAN TENTANG PERTOLONGAN PERTAMA PADA KECELAKAAN (P3K) TERHADAP SIKAP MASYARAKAT DALAM PENANGANAN KORBAN KECELAKAAN LALU LINTAS (Studi Di Wilayah RT 05 RW 04 Kelurahan Sukun Kota Malang)

45 393 31

FAKTOR – FAKTOR YANG MEMPENGARUHI PENYERAPAN TENAGA KERJA INDUSTRI PENGOLAHAN BESAR DAN MENENGAH PADA TINGKAT KABUPATEN / KOTA DI JAWA TIMUR TAHUN 2006 - 2011

1 35 26

A DISCOURSE ANALYSIS ON “SPA: REGAIN BALANCE OF YOUR INNER AND OUTER BEAUTY” IN THE JAKARTA POST ON 4 MARCH 2011

9 161 13

Pengaruh kualitas aktiva produktif dan non performing financing terhadap return on asset perbankan syariah (Studi Pada 3 Bank Umum Syariah Tahun 2011 – 2014)

6 101 0

Pengaruh pemahaman fiqh muamalat mahasiswa terhadap keputusan membeli produk fashion palsu (study pada mahasiswa angkatan 2011 & 2012 prodi muamalat fakultas syariah dan hukum UIN Syarif Hidayatullah Jakarta)

0 22 0

Pendidikan Agama Islam Untuk Kelas 3 SD Kelas 3 Suyanto Suyoto 2011

4 108 178

ANALISIS NOTA KESEPAHAMAN ANTARA BANK INDONESIA, POLRI, DAN KEJAKSAAN REPUBLIK INDONESIA TAHUN 2011 SEBAGAI MEKANISME PERCEPATAN PENANGANAN TINDAK PIDANA PERBANKAN KHUSUSNYA BANK INDONESIA SEBAGAI PIHAK PELAPOR

1 17 40

KOORDINASI OTORITAS JASA KEUANGAN (OJK) DENGAN LEMBAGA PENJAMIN SIMPANAN (LPS) DAN BANK INDONESIA (BI) DALAM UPAYA PENANGANAN BANK BERMASALAH BERDASARKAN UNDANG-UNDANG RI NOMOR 21 TAHUN 2011 TENTANG OTORITAS JASA KEUANGAN

3 32 52