The genus g Brownian map

Proof. First observe that, for every s, s ′ , t, t ′ ∈ [0, 1], d n s, t − d n s ′ , t ′ ≤ d n s, s ′ + d n t, t ′ ≤ d ◦ n s, s ′ + d ◦ n t, t ′ . By Fatou’s lemma, we have for every k ∈ N and δ 0, lim sup n →∞ P ‚ sup |s−s ′ |≤δ d ◦ n s, s ′ ≥ 2 −k Œ ≤ P ‚ sup |s−s ′ |≤δ d ◦ ∞ s, s ′ ≥ 2 −k Œ . Since d ◦ ∞ is continuous and null on the diagonal, for ǫ 0, we may find δ k 0 such that, for n sufficiently large, P sup |s−s ′ |≤δ k d ◦ n s, s ′ ≥ 2 −k ≤ 2 −k ǫ. 33 By taking δ k even smaller if necessary, we may assume that the inequality 33 holds for all n ≥ 1. Summing over k ∈ N, we find that for every n ≥ 1, P € d n ∈ K ǫ Š ≥ 1 − ǫ, where K ǫ := f ∈ C [0, 1] 2 , R : f 0, 0 = 0, ∀k ∈ N, sup |s−s ′ |∧|t−t ′ |≤δ k f s, t − f s ′ , t ′ ≤ 2 1 −k is a compact set. ƒ

6.3 The genus g Brownian map

Proof of the first assertion of Theorem 1 Thanks to Lemma 19, there exist a subsequence n k k ≥0 and a function d ∞ ∈ C [0, 1] 2 , R such that € d n k s, t Š ≤s,t≤1 d −−−→ k →∞ d ∞ s, t ≤s,t≤1 . 34 By the Skorokhod theorem, we will assume that this convergence holds almost surely. As the d n functions, the function d ∞ obeys the triangular inequality. And because d n s, s = On −14 for all s ∈ [0, 1], the function d ∞ is actually a pseudo-metric. We define the equivalence relation associated with it by saying that s ∼ ∞ t if d ∞ s, t = 0, and we call q ∞ := [0, 1] ∼ ∞ . We will show the convergence claimed in Theorem 1 along the same subsequence n k k ≥0 . Thanks to 31, we only need to see that d GH 2n k −1 ¹0, 2n k º ∼ nk , d n k , q ∞ , d ∞ −−−→ k →∞ 0. For that matter, we will use the characterization of the Gromov-Hausdorff distance via correspon- dences. Recall that a correspondence between two metric spaces S , δ and S ′ , δ ′ is a subset 1633 R ⊆ S × S ′ such that for all x ∈ S , there is at least one x ′ ∈ S ′ for which x, x ′ ∈ R and vice versa. The distortion of the correspondence R is defined by dis R := sup |δx, y − δx ′ , y ′ | : x, x ′ , y, y ′ ∈ R . Then we have [4, Theorem 7.3.25] d GH S , S ′ = 1 2 inf R dis R where the infimum is taken over all correspondences between S and S ′ . We define the correspondence R n between € 2n −1 ¹0, 2nº ∼ n , d n Š and q ∞ , d ∞ as the set R n := ¦€ 2n −1 π n ⌊2nt⌋, π ∞ t Š , t ∈ [0, 1] © where π n : ¹0, 2nº → ¹0, 2nº ∼ n and π ∞ : [0, 1] → q ∞ are both canonical projections. Its distor- tion is dis R n = sup ≤s,t≤1 d n ⌊2ns⌋ 2n , ⌊2nt⌋ 2n − d ∞ s, t , and, thanks to 34, d GH 2n k −1 ¹0, 2n k º ∼ nk , d n k , q ∞ , d ∞ ≤ 1 2 dis € R n k Š −−−→ k →∞ 0. A bound on d ∞ If we take the limit of the inequality 32 along the subsequence n k k ≥0 , we find d ∞ s, t ≤ d ◦ ∞ s, t. Because d ◦ ∞ does not satisfy the triangular inequality, we may improve this bound by considering the largest metric on q ∞ that is smaller than d ◦ ∞ : for all a and b ∈ q ∞ , we have d ∞ a, b ≤ d ∗ ∞ a, b := inf k X i= d ◦ ∞ s i , t i where the infimum is taken over all integer k ≥ 0 and all sequences s , t , s 1 , t 1 ,. . . , s k , t k satisfying a = π ∞ s , for all 0 ≤ i ≤ k − 1, t i ∼ ∞ s i+ 1 , and b = π ∞ t k .

6.4 Hausdorff dimension of the genus g Brownian map

Dokumen yang terkait

AN ALIS IS YU RID IS PUT USAN BE B AS DAL AM P E RKAR A TIND AK P IDA NA P E NY E RTA AN M E L AK U K A N P R AK T IK K E DO K T E RA N YA NG M E N G A K IB ATK AN M ATINYA P AS IE N ( PUT USA N N O MOR: 9 0/PID.B /2011/ PN.MD O)

0 82 16

ANALISIS FAKTOR YANGMEMPENGARUHI FERTILITAS PASANGAN USIA SUBUR DI DESA SEMBORO KECAMATAN SEMBORO KABUPATEN JEMBER TAHUN 2011

2 53 20

EFEKTIVITAS PENDIDIKAN KESEHATAN TENTANG PERTOLONGAN PERTAMA PADA KECELAKAAN (P3K) TERHADAP SIKAP MASYARAKAT DALAM PENANGANAN KORBAN KECELAKAAN LALU LINTAS (Studi Di Wilayah RT 05 RW 04 Kelurahan Sukun Kota Malang)

45 393 31

FAKTOR – FAKTOR YANG MEMPENGARUHI PENYERAPAN TENAGA KERJA INDUSTRI PENGOLAHAN BESAR DAN MENENGAH PADA TINGKAT KABUPATEN / KOTA DI JAWA TIMUR TAHUN 2006 - 2011

1 35 26

A DISCOURSE ANALYSIS ON “SPA: REGAIN BALANCE OF YOUR INNER AND OUTER BEAUTY” IN THE JAKARTA POST ON 4 MARCH 2011

9 161 13

Pengaruh kualitas aktiva produktif dan non performing financing terhadap return on asset perbankan syariah (Studi Pada 3 Bank Umum Syariah Tahun 2011 – 2014)

6 101 0

Pengaruh pemahaman fiqh muamalat mahasiswa terhadap keputusan membeli produk fashion palsu (study pada mahasiswa angkatan 2011 & 2012 prodi muamalat fakultas syariah dan hukum UIN Syarif Hidayatullah Jakarta)

0 22 0

Pendidikan Agama Islam Untuk Kelas 3 SD Kelas 3 Suyanto Suyoto 2011

4 108 178

ANALISIS NOTA KESEPAHAMAN ANTARA BANK INDONESIA, POLRI, DAN KEJAKSAAN REPUBLIK INDONESIA TAHUN 2011 SEBAGAI MEKANISME PERCEPATAN PENANGANAN TINDAK PIDANA PERBANKAN KHUSUSNYA BANK INDONESIA SEBAGAI PIHAK PELAPOR

1 17 40

KOORDINASI OTORITAS JASA KEUANGAN (OJK) DENGAN LEMBAGA PENJAMIN SIMPANAN (LPS) DAN BANK INDONESIA (BI) DALAM UPAYA PENANGANAN BANK BERMASALAH BERDASARKAN UNDANG-UNDANG RI NOMOR 21 TAHUN 2011 TENTANG OTORITAS JASA KEUANGAN

3 32 52