Setting getdoc806a. 823KB Jun 04 2011 12:04:35 AM

by continuity of W s p −1 , ·. A similar inequality holds for M. Finally, the law of € W s p −1 , t ∧ a + β t−a + Š ≤t≤F σ→0 [0,m] s p is that of W s p , ·, conditionally given F σ→0 [0,m] s ≤s≤m ′ , W s 1 , ·, . . . , W s p −1 , · , which is precisely what we wanted. Tightness. Let 0 δ 14 and ǫ 0. Lemma 17 provides us with a constant C and an integer n such that for all n ≥ n , PW n ∈ A ǫ, where A := ¨ X ∈ W : sup s 6=s ′ d K X s , · − X s ′ , · |s − s ′ | δ ≤ C « . Let s k k ≥1 be a countable dense subset of [0, m. As for every k ≥ 1, € W n s k , · Š n is tight, we can find compact sets K k ⊆ W such that for all k ≥ 1, for all n ≥ n , P € W n s k , · ∈ K k Š ǫ 2 k . The set K := A ∩ X ∈ W : ∀k ≥ 1, X s k , · ∈ K k . is a compact subset of W by Ascoli’s theorem [29, XX] and for n ≥ n , P € W n ∈ K Š 2ǫ, hence the tightness of the sequence of W n ’s laws. ƒ 6 Proof of Theorem 1 We adapt the proof given in [17] for the case g = 0 to our case g ≥ 1.

6.1 Setting

Let q n be uniformly distributed over the set Q n of bipartite quadrangulations of genus g with n faces. Conditionally given q n , we take v n uniformly over V q n so that q n , v n is uniform over the set Q • n of pointed bipartite quadrangulations of genus g with n faces. Recall that every element of Q n has the same number of vertices: n + 2 − 2g. Through the Chapuy-Marcus-Schaeffer bijection, q n , v n corresponds to a uniform well-labeled g-tree with n edges t n , l n . The parameter ǫ ∈ {−1, 1} appearing in the bijection will be irrelevant to what follows. Recall the notations t n 0, t n 1, . . . , t n 2n and q n 0, q n 1, . . . , q n 2n from Section 2. For technical reasons, it will be more convenient, when traveling along the g-tree, not to begin by its root but rather by the first edge of the first forest. Precisely, we define ˙t n i := ¨ t n i − u n + 2n if ≤ i ≤ u n , t n i − u n if u n ≤ i ≤ 2n, 1628 and ˙ q n i := ¨ q n i − u n + 2n if ≤ i ≤ u n , q n i − u n if u n ≤ i ≤ 2n, where u n is the integer recording the position of the root in the first forest of t n . We endow ¹0, 2nº with the pseudo-metric d n defined by d n i, j := d q n ˙ q n i, ˙ q n j . We define the equivalence relation ∼ n on ¹0, 2nº by declaring that i ∼ n j if ˙ q n i = ˙ q n j, that is if d n i, j = 0. We call π n the canonical projection from ¹0, 2nº to ¹0, 2nº ∼ n and we slightly abuse notation by seeing d n as a metric on ¹0, 2nº ∼ n defined by d n π n i, π n j := d n i, j. In what follows, we will always make the same abuse with every pseudo-metric. The metric space € ¹0, 2nº ∼ n , d n Š is then isometric to € V q n \{v n }, d q n Š , which is at d GH -distance 1 from the space € V q n , d q n Š . We extend the definition of d n to non integer values by linear interpolation: for s, t ∈ [0, 2n], d n s, t := s t d n ⌈s⌉ , ⌈t⌉ + s t d n ⌈s⌉ , ⌊t⌋ + s t d n ⌊s⌋ , ⌈t⌉ + s t d n ⌊s⌋ , ⌊t⌋, 29 where ⌊s⌋ := sup{k ∈ Z, k ≤ s}, ⌈s⌉ := ⌊s⌋ + 1, s := s − ⌊s⌋ and s := ⌈s⌉ − s. Beware that d n is no longer a pseudo-metric on [0, 2n]: indeed, d n s, s = 2 s s d n ⌈s⌉ , ⌊s⌋ 0 as soon as s ∈ Z. The triangular inequality, however, remains valid for all s, t ∈ [0, 2n]. Using the Chapuy-Marcus- Schaeffer bijection, it is easy to see that d n ⌈s⌉ , ⌊s⌋ is equal to either 1 or 2, so that d n s, s ≤ 12. As usual, we define the rescaled version: for s, t ∈ [0, 1], we let d n s, t := 1 γ n 1 4 d n 2ns, 2nt, 30 so that d GH 1 2n ¹0, 2nº ∼ n , d n , V q n , 1 γ n 1 4 d q n ≤ 1 γ n 1 4 . 31

6.2 Tightness of the distance processes

Dokumen yang terkait

AN ALIS IS YU RID IS PUT USAN BE B AS DAL AM P E RKAR A TIND AK P IDA NA P E NY E RTA AN M E L AK U K A N P R AK T IK K E DO K T E RA N YA NG M E N G A K IB ATK AN M ATINYA P AS IE N ( PUT USA N N O MOR: 9 0/PID.B /2011/ PN.MD O)

0 82 16

ANALISIS FAKTOR YANGMEMPENGARUHI FERTILITAS PASANGAN USIA SUBUR DI DESA SEMBORO KECAMATAN SEMBORO KABUPATEN JEMBER TAHUN 2011

2 53 20

EFEKTIVITAS PENDIDIKAN KESEHATAN TENTANG PERTOLONGAN PERTAMA PADA KECELAKAAN (P3K) TERHADAP SIKAP MASYARAKAT DALAM PENANGANAN KORBAN KECELAKAAN LALU LINTAS (Studi Di Wilayah RT 05 RW 04 Kelurahan Sukun Kota Malang)

45 393 31

FAKTOR – FAKTOR YANG MEMPENGARUHI PENYERAPAN TENAGA KERJA INDUSTRI PENGOLAHAN BESAR DAN MENENGAH PADA TINGKAT KABUPATEN / KOTA DI JAWA TIMUR TAHUN 2006 - 2011

1 35 26

A DISCOURSE ANALYSIS ON “SPA: REGAIN BALANCE OF YOUR INNER AND OUTER BEAUTY” IN THE JAKARTA POST ON 4 MARCH 2011

9 161 13

Pengaruh kualitas aktiva produktif dan non performing financing terhadap return on asset perbankan syariah (Studi Pada 3 Bank Umum Syariah Tahun 2011 – 2014)

6 101 0

Pengaruh pemahaman fiqh muamalat mahasiswa terhadap keputusan membeli produk fashion palsu (study pada mahasiswa angkatan 2011 & 2012 prodi muamalat fakultas syariah dan hukum UIN Syarif Hidayatullah Jakarta)

0 22 0

Pendidikan Agama Islam Untuk Kelas 3 SD Kelas 3 Suyanto Suyoto 2011

4 108 178

ANALISIS NOTA KESEPAHAMAN ANTARA BANK INDONESIA, POLRI, DAN KEJAKSAAN REPUBLIK INDONESIA TAHUN 2011 SEBAGAI MEKANISME PERCEPATAN PENANGANAN TINDAK PIDANA PERBANKAN KHUSUSNYA BANK INDONESIA SEBAGAI PIHAK PELAPOR

1 17 40

KOORDINASI OTORITAS JASA KEUANGAN (OJK) DENGAN LEMBAGA PENJAMIN SIMPANAN (LPS) DAN BANK INDONESIA (BI) DALAM UPAYA PENANGANAN BANK BERMASALAH BERDASARKAN UNDANG-UNDANG RI NOMOR 21 TAHUN 2011 TENTANG OTORITAS JASA KEUANGAN

3 32 52