Preliminaries getdoc806a. 823KB Jun 04 2011 12:04:35 AM

4 Convergence of the structure of a uniform well-labeled g-tree

4.1 Preliminaries

We investigate here the convergence of the integers previously defined, suitably rescaled, in the case of a uniform random well-labeled g-tree with n vertices. Let t n , l n be uniformly distributed over the set T n of well-labeled g-trees with n vertices. We call its scheme s n and we define M e n e ∈~Es n , f e n , l e n e ∈~Es n , m e n e ∈~Es n , σ e n e ∈~Es n , l e n e ∈~Es n , l v n v ∈Vs n , and u n as in the previous section. We know that the right scalings are 2n for sizes, p 2n for distances in the g -tree, and γ n 1 4 for spatial displacements 3 , so we set: m e n := 2m e n + σ e n 2n , σ e n := σ e n p 2n , l e n := l e n γ n 1 4 , l v n := l v n γ n 1 4 and u n := u n 2n . Remark. Throughout this paper, the notations with a parenthesized n will always refer to suitably rescaled objects—as in the definitions above. As sensed in the previous section, it will be more convenient to work with l v ’s instead of l e ’s. We use the notation Z + := {0, 1, . . . } for the set of non-negative integers. For any scheme s ∈ S, we define the set C n s of quadruples m, σ, l, u lying in Z ~ Es + × N ~ Es × Z V s × Z + such that: ⋄ ∀e ∈ ~Es, σ ¯e = σ e , ⋄ l e − ∗ = 0, ⋄ 0 ≤ u ≤ 2m e ∗ + σ e ∗ − 1, ⋄ P e ∈~Es € m e + 1 2 σ e Š = n. This is the set of integers satisfying the constraints discussed in the previous section for a well- labeled g-tree with n edges. For m, σ, l, u ∈ C n s, we will compute the probability that s n = s and m n , σ n , l n , u n = m, σ, l, u. A g-tree has such features if and only if its scheme is s and, for every e ∈ ~Es, the path M e is a Motzkin bridge from 0 to l e = l e + − l e − on [0, σ e ], and the well-labeled forest f e , l e lies in F m e σ e . Moreover, because of the relation 9, the Motzkin bridges M e e ∈~Es are entirely determined by M e e ∈ ˇEs , where ˇ Es is any orientation of ~ Es. Using Lemma 3, we obtain P s n = s, m n , σ n , l n , u n = m, σ, l, u = 1 T n Y e ∈ ˇEs M →l e [0, σ e ] F m e σ e F m ¯ e σ ¯ e = 12 n T n Y e ∈~Es σ e 2m e + σ e P S 2m e + σ e = σ e Y e ∈ ˇEs P M σ e = l e 12 3 Recall that γ := 8 9 1 4 . 1608 where S i i ≥0 is a simple random walk on Z and M i i ≥0 is a simple Motzkin walk. We will need the following local limit theorem see [25, Theorems VII.1.6 and VII.3.16] to estimate the probabilities above. We call p the density of a standard Gaussian random variable: px = 1 p 2 π e − x2 2 . Proposition 6. Let X i i ≥0 be a sequence of i.i.d. integer-valued centered random variables with a moment of order r for some r ≥ 3. Let η 2 := VarX 1 , h be the maximal span 4 of X 1 and the integer a be such that a.s. X 1 ∈ a + hZ. We define Σ k := P k i= X i , and we write Q Σ k i := PΣ k = i. 1. We have sup i ∈ka+hZ η h p k Q Σ k i − p ‚ i η p k Œ = o € k −12 Š . 2. For all 2 ≤ r ≤ r , there exists a constant C such that for all i ∈ Z and k ≥ 1, η h p k Q Σ k i ≤ C 1 + i η p k r . Proof. The first part of this theorem is merely [25, Theorem VII.1.6] applied to the variables 1 h X k − a, which have 1 as maximal span. The second part is an easy consequence of [25, Theorem VII.3.16]. ƒ In what follows, we will always use the notation S for simple random walks, M for simple Motzkin walks, and Σ for any other random walks. We will use this theorem with S and M : we find η, h = 1, 2 for S and η, h = p 2 3, 1 for M. In both cases, we may take r as large as we want.

4.2 Result

Dokumen yang terkait

AN ALIS IS YU RID IS PUT USAN BE B AS DAL AM P E RKAR A TIND AK P IDA NA P E NY E RTA AN M E L AK U K A N P R AK T IK K E DO K T E RA N YA NG M E N G A K IB ATK AN M ATINYA P AS IE N ( PUT USA N N O MOR: 9 0/PID.B /2011/ PN.MD O)

0 82 16

ANALISIS FAKTOR YANGMEMPENGARUHI FERTILITAS PASANGAN USIA SUBUR DI DESA SEMBORO KECAMATAN SEMBORO KABUPATEN JEMBER TAHUN 2011

2 53 20

EFEKTIVITAS PENDIDIKAN KESEHATAN TENTANG PERTOLONGAN PERTAMA PADA KECELAKAAN (P3K) TERHADAP SIKAP MASYARAKAT DALAM PENANGANAN KORBAN KECELAKAAN LALU LINTAS (Studi Di Wilayah RT 05 RW 04 Kelurahan Sukun Kota Malang)

45 393 31

FAKTOR – FAKTOR YANG MEMPENGARUHI PENYERAPAN TENAGA KERJA INDUSTRI PENGOLAHAN BESAR DAN MENENGAH PADA TINGKAT KABUPATEN / KOTA DI JAWA TIMUR TAHUN 2006 - 2011

1 35 26

A DISCOURSE ANALYSIS ON “SPA: REGAIN BALANCE OF YOUR INNER AND OUTER BEAUTY” IN THE JAKARTA POST ON 4 MARCH 2011

9 161 13

Pengaruh kualitas aktiva produktif dan non performing financing terhadap return on asset perbankan syariah (Studi Pada 3 Bank Umum Syariah Tahun 2011 – 2014)

6 101 0

Pengaruh pemahaman fiqh muamalat mahasiswa terhadap keputusan membeli produk fashion palsu (study pada mahasiswa angkatan 2011 & 2012 prodi muamalat fakultas syariah dan hukum UIN Syarif Hidayatullah Jakarta)

0 22 0

Pendidikan Agama Islam Untuk Kelas 3 SD Kelas 3 Suyanto Suyoto 2011

4 108 178

ANALISIS NOTA KESEPAHAMAN ANTARA BANK INDONESIA, POLRI, DAN KEJAKSAAN REPUBLIK INDONESIA TAHUN 2011 SEBAGAI MEKANISME PERCEPATAN PENANGANAN TINDAK PIDANA PERBANKAN KHUSUSNYA BANK INDONESIA SEBAGAI PIHAK PELAPOR

1 17 40

KOORDINASI OTORITAS JASA KEUANGAN (OJK) DENGAN LEMBAGA PENJAMIN SIMPANAN (LPS) DAN BANK INDONESIA (BI) DALAM UPAYA PENANGANAN BANK BERMASALAH BERDASARKAN UNDANG-UNDANG RI NOMOR 21 TAHUN 2011 TENTANG OTORITAS JASA KEUANGAN

3 32 52