The critical point. In this section, we prove that c

642 M.I. Bueno and S. Furtado for some j ∈ {1, 2, . . . , c n − 1} and k ∈ {−1, 0, 1, . . . , j − 2}, or expC ≤ ¹ n c n º + c n − 2. 1.3 Moreover, for every m ≤ ⌊nc n ⌋ + c n − 2, there exists a matrix whose exponent is m. In the literature, the problem of computing all possible exponents attained by circulant primitive matrices or, equivalently, by circulant digraphs, has been considered. In [2] and [11], it is shown that if a circulant matrix C is primitive, then its exponent is either n − 1, ⌊n2⌋, ⌊n2⌋ − 1 or does not exceed ⌊n3⌋ + 1. Matrices with exponents n − 1, ⌊n2⌋, ⌊n2⌋ − 1 are also characterized. All these results can be immediately translated into results about the possible orders of bases for a finite cyclic group. In a recent preprint [5], the authors prove that if S is a basis for Z n of order greater than k for some positive integer k, then there exists d k such that the order of S is within d k of nl for some integer l ∈ [1, k]. Notice that the result we present in Conjecture 1 produces gaps in the set of orders which are larger than the ones encountered in [5]. Moreover, we show that our gaps should be maximal. In [5], the authors also prove the existence of the additional gap [ ⌊n4⌋ + 3, ⌊n3⌋ − 2] although they do not use the techniques presented in the same paper. See [4] for a detailed proof of the existence of such gap. In this paper, we give partial results related with Conjecture 1 and give a class of matrices for which it is shown that the conjecture holds. All the results in the paper are given in terms of bases for Z n since the equivalent formulation of the problem in these terms resulted more fruitful than the original statement of the problem in terms of matrices. In Section 2, we give the explicit value of the critical point c n , as well as some of its interesting properties. In Section 3, we define Maximal Generalized Gaps and show that the set of gaps that follow from Conjecture 1 are maximal. In Section 4, we introduce some concepts and give some results concerning the order of general bases for Z n . In Section 5, we give some results about the order of bases for Z n with cardinality 3. These results will allow us to prove Conjecture 1 for some classes of bases for Z n in Section 6. In Section 7, we extend some of the results given in Sections 5 and 6 to general bases for Z n . Finally, in Section 8, we present the conclusions as well as some open questions.

2. The critical point. In this section, we prove that c

n is either ⌊ 3 √ n ⌋ or ⌊ 3 √ n ⌋ + 1. We first show that c n ≤ ⌊ 3 √ n ⌋ + 1. L EMMA 2.1. Let n be a positive integer and r = ⌊ 3 √ n ⌋ . Then ¹ n r + 1 º ¹ n r + 2 º + r + 1. 2.1 http:math.technion.ac.iliicela On the Exponent of Boolean Primitive Circulant Matrices 643 Proof. Suppose that ¹ n r + 1 º ≥ ¹ n r + 2 º + r + 1. 2.2 We have n = r + 2m + t, where m = j n r+2 k and ≤ t r + 2. Then 2.2 is equivalent to ¹ t + m r + 1 º ≥ r + 1 which implies that r + 1 2 − t ≤ m, or, equivalently, multiplying by r + 2 and adding t, r + 1 2 r + 2 − tr + 2 + t ≤ n. Let us show that r + 1 3 ≤ r + 1 2 r + 2 − tr + 2 + t 2.3 which leads to a contradiction, as n r + 1 3 . Notice that r + 1 2 − tr + 1 ≥ r + 1 2 − r + 1r + 1 = 0, which implies 2.3. Next we show that c n ≥ ⌊ 3 √ n ⌋. L EMMA 2.2. Let n be a positive integer and r = ⌊ 3 √ n ⌋ . Let p be an integer such that 0 p r. Then ¹ n p º ¹ n p + 1 º + p. 2.4 Proof. Suppose that ¹ n p + 1 º + p ≥ ¹ n p º . Then n ≥ µ¹ n p º − p ¶ p + 1. http:math.technion.ac.iliicela 644 M.I. Bueno and S. Furtado We will show that ³j n p k − p ´ p + 1 n, which gives a contradiction. Thus, 2.4 holds. We have µ¹ n p º − p ¶ p + 1 = ¹ n p º p + ¹ n p º − p 2 − p n − p + ¹ n p º − p 2 − p = n + ¹ n p º − p 2 − 2p n, where the last inequality follows because j n p k − p 2 − 2p 0, as n ≥ p + 1 3 = p 3 + 3p 2 + 3p + 1 p 3 + 2p 2 + p. It follows from Lemmas 2.1 and 2.2 that the smallest c n such that j n c n k j n c n +1 k + c n is either ⌊ 3 √ n ⌋ or ⌊ 3 √ n ⌋ + 1. T HEOREM 2.3. Let n be a positive integer and r = ⌊ 3 √ n ⌋ . If j n r k ¹ n r + 1 º + r 2.5 then c n = ⌊ 3 √ n ⌋ , otherwise c n = ⌊ 3 √ n ⌋ + 1. We now give some properties of c n that will be useful later. L EMMA 2.4. Let n be a positive integer. Then n ≤ c n + 1 2 c n − 1. Proof. If n = c n + 1 2 c n − 1 + k for some positive integer k, then ¹ n c n + 1 º + c n = c 2 n + c n − 1 + ¹ k c n + 1 º ≤ c 2 n + c n − 1 + ¹ k − 1 c n º = ¹ n c n º , which is a contradiction by the definition of c n . Before presenting the next results we introduce the following notation: If a and b are integers, with b ≥ a, then [a, b] denotes the set of integers in the real interval [a, b]. Moreover, [a] denotes the set containing just the integer a. If b a, then [a, b] = ∅. The next lemma shows that, if c n ≥ 3, the interval [⌊nc n ⌋ + 2, ⌊nc n − 1⌋ − 1] is nonempty if and only if n = 14 or n ≥ 16. L EMMA 2.5. Let n be a positive integer such that c n ≥ 3. Then ⌊nc n − 1⌋ ≥ ⌊nc n ⌋ + 3 if and only if n = 14 or n ≥ 16. http:math.technion.ac.iliicela On the Exponent of Boolean Primitive Circulant Matrices 645 Proof. If c n = 3 or c n = 4, then the result can be verified by a direct computation. Suppose that c n ≥ 5. Let k − c n − 1 3 . By Theorem 2.3, k ≥ 0. Note that ¹ n c n − 1 º ≥ ¹ n c n º + 3 2.6 if and only if ¹ k c n − 1 º ≥ ¹ k − 1 c n º + 5 − c n . Since j k c n −1 k − j k −1 c n k ≥ 0, if c n ≥ 5, then the result holds. The next lemma gives an upper bound for the length of the interval hj n c n k , j n c n −1 ki . L EMMA 2.6. Let n be a positive integer such that c n ≥ 3. • If c n = ⌊ 3 √ n ⌋, then ¹ n c n − 1 º − ¹ n c n º ≤ c n + 3. • If c n = ⌊ 3 √ n ⌋ + 1 and n = c 3 n − 1, then ¹ n c n − 1 º − ¹ n c n º = c n + 2. • If c n = ⌊ 3 √ n ⌋ + 1 and n ≤ c 3 n − 2, then ¹ n c n − 1 º − ¹ n c n º ≤ c n + 1. Proof. Let n = pc n + q, where p = ⌊nc n ⌋ and 0 ≤ q c n . Notice that ¹ n c n − 1 º − ¹ n c n º = ¹ p + q c n − 1 º . 2.7 Suppose that c n = ⌊ 3 √ n ⌋. By Lemma 2.4, n ≤ c n + 1 2 c n − 1, and therefore, ¹ n c n º ≤ c 2 n + c n − 2. Hence, p + q ≤ ¹ n c n º + c n − 1 ≤ c 2 n + 2c n − 3 = c n − 1c n + 3, which implies that ¹ p + q c n − 1 º ≤ c n + 3. http:math.technion.ac.iliicela 646 M.I. Bueno and S. Furtado Suppose that c n = ⌊ 3 √ n ⌋ + 1. Then c n − 1 3 ≤ n ≤ c 3 n − 1. If n = c 3 n − 1, p = ¹ n c n º = c 2 n − 1, q = c n − 1 and p + q = c 2 n + c n − 2 = c n − 1c n + 2. Then ¹ p + q c n − 1 º = c n + 2. If c n = ⌊ 3 √ n ⌋ + 1 and c 3 n − c n ≤ n c 3 n − 1, then p = c 2 n − 1 and q ≤ c n − 2. Therefore, p + q ≤ c 2 n − 1 + c n − 2, which implies ¹ p + q c n − 1 º ≤ c n + 1. If c n = ⌊ 3 √ n ⌋ + 1 and n ≤ c 3 n − c n − 1, then p + q ≤ c 2 n − 2 + c n − 1, which implies ¹ p + q c n − 1 º ≤ c n + 1. L EMMA 2.7. Let n be a positive integer such that c n ≥ 3. Then • if c n = ⌊ 3 √ n ⌋, then 4c n ≤ ⌊nc n ⌋ + 3; • if c n = ⌊ 3 √ n ⌋ + 1 and n = c 3 n − 1, then 3c n ≤ ⌊nc n ⌋ + 2. Proof. If c n = ⌊ 3 √ n ⌋, then n ≥ c 3 n , which implies that ¹ n c n º ≥ c 2 n ≥ 4c n − 3, for c n ≥ 3. If c n = ⌊ 3 √ n ⌋ + 1 and n = c 3 n − 1, then ¹ n c n º = c 2 n − 1 ≥ 3c n − 2, for c n ≥ 3. http:math.technion.ac.iliicela On the Exponent of Boolean Primitive Circulant Matrices 647

3. Maximal generalized gaps. Let n be a positive integer. Let E

Dokumen yang terkait

AN ALIS IS YU RID IS PUT USAN BE B AS DAL AM P E RKAR A TIND AK P IDA NA P E NY E RTA AN M E L AK U K A N P R AK T IK K E DO K T E RA N YA NG M E N G A K IB ATK AN M ATINYA P AS IE N ( PUT USA N N O MOR: 9 0/PID.B /2011/ PN.MD O)

0 82 16

ANALISIS FAKTOR YANGMEMPENGARUHI FERTILITAS PASANGAN USIA SUBUR DI DESA SEMBORO KECAMATAN SEMBORO KABUPATEN JEMBER TAHUN 2011

2 53 20

EFEKTIVITAS PENDIDIKAN KESEHATAN TENTANG PERTOLONGAN PERTAMA PADA KECELAKAAN (P3K) TERHADAP SIKAP MASYARAKAT DALAM PENANGANAN KORBAN KECELAKAAN LALU LINTAS (Studi Di Wilayah RT 05 RW 04 Kelurahan Sukun Kota Malang)

45 393 31

FAKTOR – FAKTOR YANG MEMPENGARUHI PENYERAPAN TENAGA KERJA INDUSTRI PENGOLAHAN BESAR DAN MENENGAH PADA TINGKAT KABUPATEN / KOTA DI JAWA TIMUR TAHUN 2006 - 2011

1 35 26

A DISCOURSE ANALYSIS ON “SPA: REGAIN BALANCE OF YOUR INNER AND OUTER BEAUTY” IN THE JAKARTA POST ON 4 MARCH 2011

9 161 13

Pengaruh kualitas aktiva produktif dan non performing financing terhadap return on asset perbankan syariah (Studi Pada 3 Bank Umum Syariah Tahun 2011 – 2014)

6 101 0

Pengaruh pemahaman fiqh muamalat mahasiswa terhadap keputusan membeli produk fashion palsu (study pada mahasiswa angkatan 2011 & 2012 prodi muamalat fakultas syariah dan hukum UIN Syarif Hidayatullah Jakarta)

0 22 0

Pendidikan Agama Islam Untuk Kelas 3 SD Kelas 3 Suyanto Suyoto 2011

4 108 178

ANALISIS NOTA KESEPAHAMAN ANTARA BANK INDONESIA, POLRI, DAN KEJAKSAAN REPUBLIK INDONESIA TAHUN 2011 SEBAGAI MEKANISME PERCEPATAN PENANGANAN TINDAK PIDANA PERBANKAN KHUSUSNYA BANK INDONESIA SEBAGAI PIHAK PELAPOR

1 17 40

KOORDINASI OTORITAS JASA KEUANGAN (OJK) DENGAN LEMBAGA PENJAMIN SIMPANAN (LPS) DAN BANK INDONESIA (BI) DALAM UPAYA PENANGANAN BANK BERMASALAH BERDASARKAN UNDANG-UNDANG RI NOMOR 21 TAHUN 2011 TENTANG OTORITAS JASA KEUANGAN

3 32 52