The conjecture for bases in

On the Exponent of Boolean Primitive Circulant Matrices 653 i b is a divisor of n; ii b = j n j k + 1, for some nonnegative integer j. In this case, j is unique and is given by ⌊nb⌋ + 1. Proof. If b is a divisor of n, then Lemma 5.6 implies that S is 0-periodic. Now suppose that b is not a divisor of n. Let i = ⌊nb⌋ and n = bi + t, with 0 t b. If t i then b = ⌊ n i ⌋, otherwise b ⌊ n i ⌋. Since n = i + 1b + t − b and t − b 0, it follows that ⌊ n i+1 ⌋ b. Therefore, ¹ n i + 1 º b ≤ j n i k . Suppose that b = j n i+1 k + 1. Since b − 1 = ¹ n i + 1 º ≤ n i + 1 , we have n ≥ b − 1i + 1. Therefore, by Lemma 5.6, S is 0-periodic. Now suppose that ¥ n i ¦ ≥ b ≥ j n i+1 k + 2. Then n i + 1 b − 1 and, by Lemma 5.6, S is not 0-periodic.

6. The conjecture for bases in

S n,3 . In this section, we prove the following result. T HEOREM 6.1. Let S ∈ S n,3 , n ≥ 3. Conjecture 1 holds if S satisfies one of the following conditions: i S is equivalent to {0, a, b}, where a is a divisor of n and a ≥ c n ; ii S is equivalent to {0, 1, b} for some b ≤ min n p n , j n c n −1 k − 1 o ; iii S is equivalent to a 0-periodic basis. The rest of this section is dedicated to the proof of Theorem 6.1. We first observe that, in general, if i and j are positive numbers, then n i + i n j + j can be written as i − jn − ij 0, http:math.technion.ac.iliicela 654 M.I. Bueno and S. Furtado which is equivalent to j min n i, n i o ∨ j max n i, n i o . L EMMA 6.2. Let S = {0, a, b} ∈ S n,3 , where a is a divisor of n such that a ≥ c n . Then either order S ≤ j n c n k + c n − 2 or n j − 1 ≤ orderS ≤ n j + j − 2, 6.1 for some j ∈ {1, 2, . . . , c n − 1}. Proof. Note that n 6= 3. If n = 4 then c n = a = 2 and orderS = 2, which implies that order S ≤ j n c n k + c n − 2. If n = 8 then c n = 3 and a = 4; a direct computation considering all possible values of b, namely 1, 3, 5, 7, shows that orderS = 4 in fact, in this case, S ∼ {0, 1, b ′ } for some b ′ ∈ Z n . Then 6.1 holds with j = 2. Now suppose that n 6= 4 and n 6= 8. Suppose that orderS j n c n k + c n − 2. By Theorem 5.2, a − 1 ≤ orderS ≤ n a + a − 2. Then n c n + c n n a + a. Taking into account the observation before this lemma and the fact that for n 6= 3, 4, 8, c n nc n , it follows that a nc n , as, by hypothesis, a ≥ c n . Then, because a divides n, a = n i for some i ∈ {2, 3, . . . , c n − 1}. Then 6.1 holds with j = i. L EMMA 6.3. Let S = {0, 1, b} ∈ S n,3 , with b ≤ p n . If S is 0-periodic and b ≥ ⌊nc n ⌋ + 2, then there exists i ∈ [2, c n − 1] such that i + j n i k − 3 ≤ orderS ≤ i + j n i k − 2, Proof. Note that n 3 and n 6= 8. If b is a divisor of n, then b = ni for some i ∈ [2, c n − 1]. By Corollary 5.4, orderS = n i + i − 2. If b is not a divisor of n, then, taking into account Theorem 5.7 , b = ⌊ni⌋ + 1 for some i ∈ [2, c n − 1]. Let m = ⌊ni⌋ and n = mi + t, 0 ≤ t i. By Corollary 5.4, order S = ¹ mi + t m + 1 º + j n i k − 1 = ¹ t − i m + 1 º + i + j n i k − 1. http:math.technion.ac.iliicela On the Exponent of Boolean Primitive Circulant Matrices 655 If m + 1 ≥ i − t, then ¹ t − i m + 1 º = −1. If m + 1 i − t, then ¹ t − i m + 1 º = −2, as i − t ≤ i ≤ c n − 1 ≤ j n c n k − 1 ≤ b − 3 ≤ 2b = 2m + 2. Note that c n ≤ j n c n k for n 6= 3, 8. Thus, the result follows. L EMMA 6.4. Let S = {0, 1, b} ∈ S n,3 . If b ∈ h c n + 1, j n c n k + 1 i , then orderS ≤ j n c n k + c n − 2. Proof. By Theorem 5.3, order S ≤ ¥ n b ¦ + b − 2. Thus, it is enough to show that b + j n b k ≤ c n + ¹ n c n º . 6.2 Taking into account the observation before Lemma 6.2, if c n min {b, n b } then b + j n b k ≤ b + n b c n + n c n , which implies 6.2, as c n is an integer. Since c n min n b, n b o ⇔ c n b ≤ j n c n k if c n is not a divisor of n c n b ≤ n c n − 1 if c n is a divisor of n , we now need to show that 6.2 holds if either b = j n c n k + 1 or b = n c n and c n divides n. The latter is immediate. For the first case, note that     n j n c n k + 1     = c n − 1, as, if n = j n c n k c n + t, with 0 ≤ t c n , then n = c n − 1 µ¹ n c n º + 1 ¶ + µ t − c n + ¹ n c n º + 1 ¶ , with ≤ t − c n + j n c n k + 1 j n c n k + 1. Next we give a result that allows us to show that the conjecture holds if S = {0, 1, b}, with b ≤ p n and b ∈ [⌊nc n ⌋ + 2, ⌊nc n − 1⌋ − 1]. Note that ⌊nc n ⌋ + 2 ≤ p n if and only http:math.technion.ac.iliicela 656 M.I. Bueno and S. Furtado if c n ≥ 3. Also, by Lemma 2.5, for c n ≥ 3 the previous interval is nonempty if and only if n = 14 or n ≥ 16. Finally, observe that ⌊nb⌋ = c n − 1. We think the method used to prove the conjecture in this case might be generalizable to the cases in which b ∈ [⌊ n c n −k ⌋, ⌊ n c n −k+1 ⌋ − 1], with 1 ≤ k ≤ c n − 3, when this interval is nonempty. Some results presented in Section 2 will be used. L EMMA 6.5. Let n be a positive integer such that c n ≥ 3, b ∈ h ⌊ n c n ⌋ + 2, ⌊ n c n −1 ⌋ − 1 i and t = n − c n − 1b. If ¹ n c n º + 1 b − t, 6.3 then either c n = ⌊ 3 √ n ⌋, or c n = ⌊ 3 √ n ⌋ + 1 and n = c 3 n − 1. Moreover, 3c n ≤ ⌊nc n ⌋ + 2. Proof. Let m = c n − 1 and r = ⌊nc n ⌋ + c n − 2. First we show that if 6.3 holds, then b = j n c n −1 k − 1. Suppose that b ≤ j n c n −1 k − 2. Then t ≥ 2c n − 1 and, taking into account Lemma 2.6, we get b − t ≤ ¹ n c n − 1 º − 2 − 2c n − 1 ≤ ¹ n c n º + 1, a contradiction. Now suppose that b = j n c n −1 k − 1 and 6.3 holds. Then t ≥ c n − 1. If c n = ⌊ 3 √ n ⌋ + 1 and n ≤ c 3 n − 2, then, taking into account Lemma 2.6, b − t ≤ ¹ n c n − 1 º − 1 − c n − 1 ≤ ¹ n c n º + 1, a contradiction. Thus, c n = ⌊ 3 √ n ⌋ or c n = ⌊ 3 √ n ⌋ + 1 and n = c 3 n − 1. Taking into account Lemma 2.7, the result follows. L EMMA 6.6. Let S = {0, 1, b} ∈ S n,3 , with c n ≥ 3. Suppose that b ∈ [⌊nc n ⌋ + 2, ⌊nc n − 1⌋ − 1]. Then order {0, 1, b} ≤ ¹ n c n º + c n − 2. Proof. Note that n = 14 or n ≥ 16 for the interval [⌊nc n ⌋ + 2, ⌊nc n − 1⌋ − 1] not to be empty. Let r = j n c n k + c n − 2 and n = c n − 1b + t for some 0 t b. Note that t ≥ c n − 1. Let m = ⌊nb⌋ = c n − 1. Since c n ≤ ⌊nc n ⌋, 2m ≤ r. Let k 1 i = ib and k 2 i = ib − 1 + r, for i ∈ {0, 1, . . . , m}, http:math.technion.ac.iliicela On the Exponent of Boolean Primitive Circulant Matrices 657 k 1 i = ib − n and k 2 i = ib − 1 + r − n, for i ∈ {m + 1, m + 2, . . . , 2m}, and k 1 i = ib − 2n and k 2 i = ib − 1 + r − 2n, for i ∈ {2m + 1, 2m + 2, . . . , 3m}. Consider the following intervals in Z : I i = [k 1 i, k 2 i], i ∈ {0, 1, . . . , 3m}. Note that, for each i = 0, 1, . . . , 3m, k 1 i k 2 i and k 1 i n. Also, 0 ≤ k 1 i, for i = 0, 1, . . . , 3m, i 6= 2m + 1. We have rS ≡ S r i=0 I i mod n. We next show that if b − t ≤ ⌊nc n ⌋ + 1, 6.4 then S 2 m i=0 I i ≡ Z n mod n; if ⌊nc n ⌋ + 1 b − t, 6.5 then S 3 m i=0 I i ≡ Z n mod n, which implies rS = Z n . Note that 2m r and, by Lemma 6.5, if 6.5 holds, 3m ≤ r. Consider the intervals I i , i = 0, 1, . . . , 3m, ordered in the following way: I , I 2 m+1 , I m+1 , I 1 , I 2 m+2 , I m+2 , . . . , I 3 m , I 2 m , I m . Clearly, for j = 1, 2, . . . , m, k 1 j − 1 ≤ k 1 m + j ≤ k 1 j and k 1 2m + j ≤ k 1 m + j. We show that, for each j = 1, 2, . . . , m, i k 2 m + j + 1 ≥ k 1 j; ii k 2 j − 1 + 1 ≥ k 1 m + j if 6.4 holds; iii k 2 j − 1 + 1 ≥ k 1 2m + j ≥ k 1 j − 1 if 6.5 holds; iv k 2 2m + j + 1 ≥ k 1 m + j if 6.5 holds; v k 2 m ≥ n − 1, which completes the proof. Condition i follows easily taking into account that c n + t ≤ ⌊ n c n ⌋ + 1, as t − c n − 1b ≤ n − c n − 1 µ¹ n c n º + 2 ¶ = µ n − c n ¹ n c n º¶ + ¹ n c n º − 2c n − 1 ≤ c n − 1 + ¹ n c n º − 2c n − 1 = ¹ n c n º − c n + 1. Condition ii follows from a simple calculation. http:math.technion.ac.iliicela 658 M.I. Bueno and S. Furtado Now suppose that 6.5 holds. The first inequality in condition iii holds as b − 2t ≤ ¹ n c n − 1 º − 1 − 2c n − 1 ≤ ¹ n c n º + 1 ≤ ¹ n c n º + c n − j, where the second inequality follows from Lemma 2.6. Since we have shown in i that t ≤ j n c n k − c n + 1, then b ⌊nc n ⌋ + 1 + t 2t, which implies the second inequality. Condition iv holds if 2c n + t ≤ ⌊nc n ⌋ + 2. By Lemma 6.5 either c n = ⌊ 3 √ n ⌋ or c n = ⌊ 3 √ n ⌋ + 1 and n = c 3 n − 1. If c n = ⌊ 3 √ n ⌋, by Lemma 2.6, t ≤ ¹ n c n − 1 º − 1 − ¹ n c n º − 1 ≤ c n + 3 − 2. Thus, taking into account Lemma 2.7, 2c n + t ≤ 3c n + 1 ≤ ¹ n c n º + 2. If c n = ⌊ 3 √ n ⌋ + 1 and n = c 3 n − 1, by Lemma 2.6, t ≤ ¹ n c n − 1 º − 1 − ¹ n c n º − 1 ≤ c n + 2 − 2. By Lemma 2.7, 2c n + t ≤ 3c n ≤ ¹ n c n º + 2. Finally, note that condition v is equivalent to t ≤ ⌊nc n ⌋, which holds as c n ≥ 3 and we have shown that t + c n ≤ ⌊nc n ⌋ + 1. Proof of Theorem 6.1. It follows from Lemma 6.2 that if condition i holds then Conjec- ture 1 is satisfied. Now suppose that S = {0, 1, b}, with b ≤ p n . If b ≤ c n , Conjecture 1 holds by Theorem 5.3; if b ∈ [c n + 1, j n c n k + 1], the conjecture holds by Lemma 6.4; if b ∈ hj n c n k + 2, j n c n −1 k − 1 i then c n ≥ 3 and Conjecture 1 holds by Lemma 6.6. Finally, if b ≥ ⌊nc n ⌋+2 and S is 0 -periodic, Conjecture 1 holds by Lemma 6.3. Since two equivalent bases have the same order, the result follows. http:math.technion.ac.iliicela On the Exponent of Boolean Primitive Circulant Matrices 659

7. The conjecture for bases with cardinality larger than 3. In this section, we include

Dokumen yang terkait

AN ALIS IS YU RID IS PUT USAN BE B AS DAL AM P E RKAR A TIND AK P IDA NA P E NY E RTA AN M E L AK U K A N P R AK T IK K E DO K T E RA N YA NG M E N G A K IB ATK AN M ATINYA P AS IE N ( PUT USA N N O MOR: 9 0/PID.B /2011/ PN.MD O)

0 82 16

ANALISIS FAKTOR YANGMEMPENGARUHI FERTILITAS PASANGAN USIA SUBUR DI DESA SEMBORO KECAMATAN SEMBORO KABUPATEN JEMBER TAHUN 2011

2 53 20

EFEKTIVITAS PENDIDIKAN KESEHATAN TENTANG PERTOLONGAN PERTAMA PADA KECELAKAAN (P3K) TERHADAP SIKAP MASYARAKAT DALAM PENANGANAN KORBAN KECELAKAAN LALU LINTAS (Studi Di Wilayah RT 05 RW 04 Kelurahan Sukun Kota Malang)

45 393 31

FAKTOR – FAKTOR YANG MEMPENGARUHI PENYERAPAN TENAGA KERJA INDUSTRI PENGOLAHAN BESAR DAN MENENGAH PADA TINGKAT KABUPATEN / KOTA DI JAWA TIMUR TAHUN 2006 - 2011

1 35 26

A DISCOURSE ANALYSIS ON “SPA: REGAIN BALANCE OF YOUR INNER AND OUTER BEAUTY” IN THE JAKARTA POST ON 4 MARCH 2011

9 161 13

Pengaruh kualitas aktiva produktif dan non performing financing terhadap return on asset perbankan syariah (Studi Pada 3 Bank Umum Syariah Tahun 2011 – 2014)

6 101 0

Pengaruh pemahaman fiqh muamalat mahasiswa terhadap keputusan membeli produk fashion palsu (study pada mahasiswa angkatan 2011 & 2012 prodi muamalat fakultas syariah dan hukum UIN Syarif Hidayatullah Jakarta)

0 22 0

Pendidikan Agama Islam Untuk Kelas 3 SD Kelas 3 Suyanto Suyoto 2011

4 108 178

ANALISIS NOTA KESEPAHAMAN ANTARA BANK INDONESIA, POLRI, DAN KEJAKSAAN REPUBLIK INDONESIA TAHUN 2011 SEBAGAI MEKANISME PERCEPATAN PENANGANAN TINDAK PIDANA PERBANKAN KHUSUSNYA BANK INDONESIA SEBAGAI PIHAK PELAPOR

1 17 40

KOORDINASI OTORITAS JASA KEUANGAN (OJK) DENGAN LEMBAGA PENJAMIN SIMPANAN (LPS) DAN BANK INDONESIA (BI) DALAM UPAYA PENANGANAN BANK BERMASALAH BERDASARKAN UNDANG-UNDANG RI NOMOR 21 TAHUN 2011 TENTANG OTORITAS JASA KEUANGAN

3 32 52