Order of bases for Z

On the Exponent of Boolean Primitive Circulant Matrices 649 K; S, n-periodic elements in Z n and there are no k; S, n-periodic elements in Z n for k K. R EMARK 2. If the minimum nonzero element of a basis S of Z n , say b, is not 1, then S is not 0-periodic as any b ′ , with 0 b ′ b, is not 0; S, n-periodic. We finish this section with the following lemma. L EMMA 4.4. [2] Let S ∈ S n and m be a divisor of n. Suppose that S contains an element of order m. Then order S ≤ n m + m − 2. By Remark 1, all bases for Z n , n ≥ 3, with cardinality 2 have order n − 1, and therefore, they satisfy Conjecture 1. In the next section we focus on bases with cardinality 3.

5. Order of bases for Z

n with cardinality 3. By S n,r we denote the set of all bases for Z n with cardinality r. For a given positive integer n, we define p n as follows: p n = ½ ⌊n2⌋ + 1, if n is odd ⌊n2⌋, if n is even. 5.1 L EMMA 5.1. Let S = {0, s 1 , s 2 } ∈ S n,3 . If gcds 1 , n = 1 or gcds 2 , n = 1 or gcds 2 − s 1 , n = 1, then there exists b ∈ Z n such that b ≤ p n and S ∼ {0, 1, b}. Proof. Without loss of generality, suppose that either gcds 1 , n = 1 or gcds 2 − s 1 , n = 1. In the first case, s 1 is a unit in Z n and S ∼ S 1 = s −1 1 S = {0, 1, s −1 1 s 2 }. If s −1 1 s 2 ≤ ⌊n2⌋, the claim holds with b = s −1 1 s 2 . If s −1 1 s 2 ⌊n2⌋, then S ∼ S 2 = 1 − S 1 = {0, 1, n + 1 − s −1 1 s 2 } and the claim holds with b + 1 − s −1 1 s 2 . In the second case, that is, gcds 2 − s 1 , n = 1, let S 1 = −s 1 + S = {0, s 2 − s 1 , n − s 1 }. Then S ∼ S 2 = s ′ S 1 , where s ′ = s 2 − s 1 −1 . Now the argument used above applies to show the result. We note that if gcds 1 , n 6= 1, gcds 2 , n 6= 1 and gcds 2 − s 1 , n 6= 1 and one of s 1 , s 2 , s 2 − s 1 , n − s 1 , n − s 2 , n − s 2 + s 1 is a product of a divisor of n and a unit in Z n , then http:math.technion.ac.iliicela 650 M.I. Bueno and S. Furtado there exist a, b ∈ Z n such that a is a divisor of n, a 6= 1 and S = {0, s 1 , s 2 } ∼ {0, a, b}. To see this, assume, without loss of generality, that s 1 s 2 . Note that S ∼ S 1 = −s 1 + S = {0, n − s 1 , s 2 − s 1 } ∼ S 2 = −s 2 + S = {0, n + s 1 − s 2 , n − s 2 }. Suppose that s 1 is a product of a divisor of n and a unit. The proof is analogous in the other mentioned cases, eventually by considering S 1 or S 2 instead of S. If s 1 |n, then the result is clear; otherwise s 1 = d 1 t 1 , where d 1 |n and gcdn, t 1 = 1. Then S ∼ t −1 1 S = {0, d 1 , t −1 1 s 2 }, and the result follows. We were not able to prove that every basis S ∈ S n,3 that is not equivalent to a basis of the form {0, 1, b} is equivalent to a basis {0, a, b} with a 6= 1 a divisor of n. However, numerical experiments show that if these bases exist, they are rare. T HEOREM 5.2. Let S = {0, a, b} ∈ S n,3 , where a is a divisor of n and a 6= 1. Then a − 1 ≤ orderS ≤ n a + a − 2. Proof. The inequality on the right follows from Lemma 4.4. Consider the quotient map f : Z n → Z a . Notice that T = f S = {0, fb}. Since S is a basis and a divides n, gcda, b = 1 and f b 6= 0. Therefore, T is a basis for Z a . Moreover, by Remark 1, order T = a − 1. Since orderS ≥ orderT , we get orderS ≥ a − 1. From now on, we consider bases S of S n,3 of the form {0, 1, b}. For convenience, we write expq; b, n instead of expq; S, n; we also say that S is 0-periodic instead of 0; S, n- periodic. If S = {0, 1, b} ∈ S n,3 , then, considering the standard addition and multiplication in Z, for k ≥ 1, kS = [0, k] ∪ [b, b + k − 1] ∪ [2b, 2b + k − 2] ∪ · · · ∪ [k − 1b, k − 1b + 1] ∪ [kb]. For j = 0, 1, . . . , k, let I j,k = [jb, jb + k − j]. 5.2 T HEOREM 5.3. Let S = {0, 1, b} ∈ S n,3 . Then j n b k ≤ orderS ≤ j n b k + b − 2. http:math.technion.ac.iliicela On the Exponent of Boolean Primitive Circulant Matrices 651 Proof. Let n = mb + t, with m = ¥ n b ¦ and 0 ≤ t b. Considering the standard addition and multiplication in Z , the largest element in kS is kb. Thus, if k = orderS, then kb ≥ n − 1 = mb + t − 1, which implies the inequality on the left. We have I ,b −1 ∪ I 1 ,b −1 = [0, 2b − 2] ⊂ b − 1S. Moreover, {0, b, . . . , m − 1b} ⊂ m − 1S. Thus, b − 1 + m − 1S = b − 1S + m − 1S = Z n . which implies the inequality on the right. We now focus on 0-periodic bases of S n,3 . C OROLLARY 5.4. Let S = {0, 1, b} ∈ S n,3 . If S is 0-periodic, then order S = j n b k + b − 2. Proof. Suppose kS = Z n . Let j = ¥ n b ¦ − 1. Note that k ≥ j . Since S is 0-periodic, necessarily [j b, j b + b − 1] ⊂ I j ,k , which implies that ³j n b k − 1 ´ b + k − ³j n b k − 1 ´ ≥ j n b k b − 1, that is, k ≥ ¥ n b ¦ + b − 2. Then orderS ≥ ¥ n b ¦ + b − 2. Since, by Theorem 5.3, orderS ≤ ¥ n b ¦ + b − 2, the result follows. We next characterize the 0-periodic bases in S n,3 . Note that, by Remark 2, we may assume that these bases are of the form {0, 1, b}. First, we add a technical lemma. It is clear that if b and w are positive integers, with b ≥ 2, then the minimum x + y among all the solutions of x + by = w, with x, y ≥ 0, is obtained when y is y = ¥ w b ¦. Since x = w − by, the minimum value of x + y is x + y = w − ¥ w b ¦ b − 1. Note also that x = w − by b. We then have the following lemma. L EMMA 5.5. Let b, q ∈ Z n , with b ≥ 2 and q 6= 0. Then expq; b, n = min ½ q + kn − b − 1 ¹ q + kn b º , k ≥ 0 ¾ . Note that expq; b, n ≤ q − b − 1 j q b k ≤ q, http:math.technion.ac.iliicela 652 M.I. Bueno and S. Furtado where the first inequality follows from Lemma 5.5. L EMMA 5.6. Let S = {0, 1, b} ∈ S n,3 . Then S is 0-periodic if and only if either b divides n or b − 1 ³j n b k + 1 ´ ≤ n. 5.3 Proof. Suppose that S is 0-periodic and b is not a divisor of n. Let q = ¥ n b ¦ b − 1. By Lemma 5.5 and Definition 4.3, q − b − 1 j q b k ≤ q + n − b − 1 ¹ n + q b º . 5.4 As n + q = 2 ¥ n b ¦ b + t − 1, for some 1 ≤ t b, it follows that ¥ n+q b ¦ = 2 ¥ n b ¦ . Also, ¥ q b ¦ = ¥ n b ¦ − 1. Thus, 5.4 is equivalent to 5.3. To prove the converse note that, from Lemma 5.5, if b divides n, S is 0-periodic, as, for any k 0, kn − b − 1 kn b 0. Now suppose that 5.3 holds. According to Lemma 5.5, we need to show that, for any k 0 and any q ∈ Z n \{0}, q − b − 1 j q b k ≤ q + kn − b − 1 ¹ q + kn b º , or equivalently, b − 1 µ¹ q + kn b º − j q b k ¶ ≤ kn. Because of 5.3, it is enough to show that ¹ q + kn b º − j q b k ≤ k ³j n b k + 1 ´ . For n = ¥ n b ¦ b + t, 0 ≤ t b, kn + q = k j n b k b + kt + q = ³ k j n b k + j q b k + k ´ b + kt − b + ³ q − j q b k b ´ . As, kt − b + q − ¥ q b ¦ b b, then ¹ q + kn b º ≤ k j n b k + j q b k + k, completing the proof. T HEOREM 5.7. Let S = {0, 1, b} ∈ S n,3 . Then S is 0-periodic if and only if one of the following conditions is satisfied: http:math.technion.ac.iliicela On the Exponent of Boolean Primitive Circulant Matrices 653 i b is a divisor of n; ii b = j n j k + 1, for some nonnegative integer j. In this case, j is unique and is given by ⌊nb⌋ + 1. Proof. If b is a divisor of n, then Lemma 5.6 implies that S is 0-periodic. Now suppose that b is not a divisor of n. Let i = ⌊nb⌋ and n = bi + t, with 0 t b. If t i then b = ⌊ n i ⌋, otherwise b ⌊ n i ⌋. Since n = i + 1b + t − b and t − b 0, it follows that ⌊ n i+1 ⌋ b. Therefore, ¹ n i + 1 º b ≤ j n i k . Suppose that b = j n i+1 k + 1. Since b − 1 = ¹ n i + 1 º ≤ n i + 1 , we have n ≥ b − 1i + 1. Therefore, by Lemma 5.6, S is 0-periodic. Now suppose that ¥ n i ¦ ≥ b ≥ j n i+1 k + 2. Then n i + 1 b − 1 and, by Lemma 5.6, S is not 0-periodic.

6. The conjecture for bases in

Dokumen yang terkait

AN ALIS IS YU RID IS PUT USAN BE B AS DAL AM P E RKAR A TIND AK P IDA NA P E NY E RTA AN M E L AK U K A N P R AK T IK K E DO K T E RA N YA NG M E N G A K IB ATK AN M ATINYA P AS IE N ( PUT USA N N O MOR: 9 0/PID.B /2011/ PN.MD O)

0 82 16

ANALISIS FAKTOR YANGMEMPENGARUHI FERTILITAS PASANGAN USIA SUBUR DI DESA SEMBORO KECAMATAN SEMBORO KABUPATEN JEMBER TAHUN 2011

2 53 20

EFEKTIVITAS PENDIDIKAN KESEHATAN TENTANG PERTOLONGAN PERTAMA PADA KECELAKAAN (P3K) TERHADAP SIKAP MASYARAKAT DALAM PENANGANAN KORBAN KECELAKAAN LALU LINTAS (Studi Di Wilayah RT 05 RW 04 Kelurahan Sukun Kota Malang)

45 393 31

FAKTOR – FAKTOR YANG MEMPENGARUHI PENYERAPAN TENAGA KERJA INDUSTRI PENGOLAHAN BESAR DAN MENENGAH PADA TINGKAT KABUPATEN / KOTA DI JAWA TIMUR TAHUN 2006 - 2011

1 35 26

A DISCOURSE ANALYSIS ON “SPA: REGAIN BALANCE OF YOUR INNER AND OUTER BEAUTY” IN THE JAKARTA POST ON 4 MARCH 2011

9 161 13

Pengaruh kualitas aktiva produktif dan non performing financing terhadap return on asset perbankan syariah (Studi Pada 3 Bank Umum Syariah Tahun 2011 – 2014)

6 101 0

Pengaruh pemahaman fiqh muamalat mahasiswa terhadap keputusan membeli produk fashion palsu (study pada mahasiswa angkatan 2011 & 2012 prodi muamalat fakultas syariah dan hukum UIN Syarif Hidayatullah Jakarta)

0 22 0

Pendidikan Agama Islam Untuk Kelas 3 SD Kelas 3 Suyanto Suyoto 2011

4 108 178

ANALISIS NOTA KESEPAHAMAN ANTARA BANK INDONESIA, POLRI, DAN KEJAKSAAN REPUBLIK INDONESIA TAHUN 2011 SEBAGAI MEKANISME PERCEPATAN PENANGANAN TINDAK PIDANA PERBANKAN KHUSUSNYA BANK INDONESIA SEBAGAI PIHAK PELAPOR

1 17 40

KOORDINASI OTORITAS JASA KEUANGAN (OJK) DENGAN LEMBAGA PENJAMIN SIMPANAN (LPS) DAN BANK INDONESIA (BI) DALAM UPAYA PENANGANAN BANK BERMASALAH BERDASARKAN UNDANG-UNDANG RI NOMOR 21 TAHUN 2011 TENTANG OTORITAS JASA KEUANGAN

3 32 52